
Regular Chains in bpas

1 RegularChain Class Description

The regular chain classes in BPAS provide a collection of routines for solving
systems of algebraic equations by means of exact methods, a.k.a. symbolic com-
putation. The main commands for accomplishing this are the triangularize

and intersect methods of the RegularChain class and the intersect method
of the ZeroDimensionalRegularChain class. The objects of both these classes
are regular chains. Becuase regular chains are mathematical objects that al-
gebraically encode geometric components of the solution space, the solutions
to a system of algebraic equations can be expressed as a set of regular chains.
This is precisely what triangularize and intersect accomplish: for an in-
put polynomial p (for intersect) or algebraic system S (for triangularize),
the output is a description of the solution set as a collection of RegularChain

objects.
To state clearly what the output of triangularize or intersect is, we

must define the concept of a regular chain. To this end, first observe that
algebraic equations act as constraints on the geometric space defined by the
possible values of their variables (typically Cn for n variables). For a set S of
algebraic equations in n variables, and with coefficients in a subfield of C, say
the field Q of rational numbers, the set of points in Cn consistent with these
algebraic constraints, i.e., the locus of common zeros of the equations in S, is
a certain geometric object, the algebraic variety V (S), in Cn. For example, if
S = {x2 + y2 − 1}, then V (S) is the complex unit circle in C2. The strategy of
the intersect algorithm is to compute the solution space by dividing it into so-
called quasi-components, each of which is encoded by a special kind of algebraic
system, called a regular chain, that has a particular structure.

There are two key structural properties of regular chains that allow them
to encode distinct components of algebraic varieties. First of all, regular chains
have a triangular structure, in the sense that for polynomials in K[x1, . . . , xn],
with K a field and variable ordering x1 < x2 < ⋯ < xn, the polynomials in a
regular chain T are non-constant and have pairwise distinct main variables. This
implies that each variable can be the main variable of at most one element of T .
So if p ∈ T has xi as its main variable, the only other variables that can appear
in p are in {x1, x2, . . . , xi−1}. Regular chains are therefore triangular sets. For
this reason, the RegularChain class in bpas inherits from the TriangularSet

class.

1



Having the structure of a triangular set allows a regular chain to encode a
solution set in a manner analogous to linear systems in row echelon form. In
this case, linear systems can be solved by back-substitution. Suppose that a
linear system has m equations and n variables. If m = n (and the system is
non-singular), then the solution set is simply a unique point in Cn. If m < n,
however, then the solution set is a parameterized linear subspace of Cn, and if
all the equations are linearly independent it has dimension n−m. The situation
is similar for regular chains. If m = n (same number of equations as variables)
for a regular chain T , then the variety V (T ) is a set of points in Cn. Thus,
the non-linearity of the equations allows a single system T to encode many
solutions, even when the solutions are points. If m < n, on the other hand,
then the variety V (T ) is a complex manifold of dimension m − n embedded in
Cn. You may notice that we did not mention for regular chains an analogous
condition to the non-singularity of linear systems. This is because regular chains
have another structural property, over being triangular, that ensures they are
“non-singular” in a sense that will now be made clear.

To see what the issue is here, consider the following example. Suppose
that we have a triangular set T = {T1, T2} = {x2

1 − 1, (x1 + 1)x2
2 + 1}, where

T1, T2 ∈ Q[x1, x2], x1 < x2. Consider T2, which has the largest main variable,
x2, in the set. The leading coefficient of T2 viewed as a univariate polynomial
in its main variable, called the initial of T2, is x1 + 1. Provided that x1 ≠ −1, T2

provides a valid constraint on the ambient space of T . If x1 = −1, however, then
the system becomes inconsistent, because T2 asserts that 1 = 0. So, provided
we avoid this “singular” point things are fine. The problem with T , however, is
that T1 = (x1 +1)(x1 −1), so T1 includes the “singular” case, so that at x1 = −1,
T gives an inconsistent set of constraints.

There are issues even if the system does not become inconsistent. Consider
the positive-dimensional case where

T = {T1, T3} = {x2
1 − 1/4, (x1 + 1/2)x2

3 + x2
2 + x2

1 − 5/4} ,

where T1, T3 ∈ Q[x1, x2, x3], x1 < x2 < x3. The constraint T1 = 0 imposes the
condition that x1 = ± 1

2
. At x1 = 1/2, T3 becomes x2

3 + x2
2 − 1, a circle in the

x2x3-plane, and a one-dimensional manifold. But, at x1 = −1/2, T3 becomes
x2
2 − 1, a degenerate two-point zero-dimensional case. This is another kind of

“singular” case we wish to avoid. For positive dimensional regular chains, then,
avoiding such “singular” cases means that the quasi-component of the chain has
unmixed dimension, i.e., the dimension is constant across all of W (T ).

Thus, to avoid the possibility that a triangular set can be “singular” in these
ways, we must ensure that the initials of the polynomials in the set can never
be zero. Let Tk be the polynomial of T with main variable xk, if it exists, let
xi be the largest main variable of a polynomial in a triangular set T , with T
non-empty, and let T<i =def T /Ti. The polynomials in T generate an ideal ⟨T ⟩
that itself generates the variety V (T ). To rule out the case that hTi can be
zero it must certainly be the case that hTi ∉ ⟨T<i⟩, i.e., hTi must not be zero
modulo ⟨T<i⟩ (we consider T<i and not T here because T<i places the constraints



on variables less than xi, and hTi has only variables less than xi). But this is
not the only situation in which hTi can be zero on some part of V (T<i). If there
exist any polynomials in q ∈ K[x1, . . . , xn] such that hk

Ti
⋅q ∈ ⟨T<i⟩ for some k ∈ N,

i.e., any constraints q such that either q = 0 or hTi = 0 holding guarantees that
we are in V (T<i), then there are still parts of V (T<i) on which hTi = 0. In this
case, hTi is a zero-divisor modulo ⟨T<i⟩. Thus, to avoid “singular” cases, we
must therefore prevent hTi from being zero or a zero-divisor modulo ⟨T<i⟩.

Since we can repeat this reasoning for all of the initals of the polynomials
Tj in a chain modulo the ideals generated by T<j , we require that an analogous
“non-singular” condition holds simultaneously on all of the initials of the poly-
nomials in T , i.e., for hT , so that none of the initials of polynomials in T can
ever be zero or a zero-divisor. The concept we need to make this precise is the
saturated ideal of a triangular set T , denoted sat(T ), which is the set of poly-
nomials q ∈ K[x1, . . . , xn] such that hk

T ⋅ q ∈ ⟨T ⟩, k ∈ N. Given that we need to
avoid zeros and zero-divisors modulo an ideal, we naturally define a polynomial
to be regular modulo an ideal I if it is neither zero nor a zero-divisor modulo
I. We then finally have that a triangular set T ⊂ K[x1, . . . , xn] is a regular
chain if either (1) T is empty, or (2) T<Tmax is a regular chain, where Tmax is the
polynomial in T with greatest main variable, and the initial of Tmax is regular
modulo sat(T<max).

Since regular chains work with the ideal sat(T ), we ensure that the points
picked out by a regular chain are in W (T ) = V (T )/V (hT ), as pointed out above.
W (T ) is a quasi-component because it is defined by removing a lower dimen-
sional boundary, and hence its zero set is not in general actually a variety (not

closed in the Zariski topology); its Zariski closure W (T ), however, is precisely
V (sat(T )) ⊆ V (T ).

2 triangularize

For a set F of polynomials in Q[x1, . . . , xn], which can be encoded as as vector F
of SparseMultivariateRationalPolynomial objects (abbreviated with type-

def SMQP), which have RationalNumber coefficients (abbreviated with typedef

RN)), we can compute the triangular decomposition of the variety V (F ) by
defining an empty regular chain over the ambient space defined by the variable
ordering x1 < x2 < ⋯ < xn by calling

vector<Symbol> R = {’x_n’,...,’x_2’,’x_1’};

RegularChain T(R);

and then calling

vector<RegularChain<RN,SMQP>> dec;

dec = T.triangularize(F);

For example, to compute the intersection of the unit sphere p1 = x2+y2+z2−1 ∈
Q[x, y, z] and the unit circle p2 = x2 + y2 − 1 ∈ Q[x, y], with z < y < x, in the
ambient space C3 with Cartesian coordinates x, y, z, then we can use



vector<SMQP> F = {SMQP("x^2+y^2+z^2-1"),SMQP("x^2+y^2-1")};

vector<Symbol> R = {’x’,’y’,’z’};

RegularChain<RN,SMQP> T(R);

vector<RegularChain<RN,SMQP>> dec;

dec = T.triangularize(F);

for (auto d : dec)

d.display();

which produces the output

/

| x^2 + y^2 - 1 = 0

<

| z = 0

\

which is a regular chain that picks out the complex unit circle in C3, described
as the intersection of the unit cylinder (x2 +y2 −1 = 0) and the xy-plane (z = 0).

Note that the triangularize method can also be called with a non-empty
regular chain T . In this case it will compute the intersection of the zero set of
the set F of input polynomials and the quasi-component of T . This is the sort
of case handled by the method intersect.

3 intersect

The method intersect of the RegularChain class is essentially a special case
of triangularize for a single polynomial input (or contrariwise, and more
acurately, triangularize is really just a wrapper for intersect). For a poly-
nomial p ∈ Q[x1, . . . , xn], encoded as an SMQP object p, and a regular chain T
over the ambient space defined by the variable ordering x1 < x2 < ⋯ < xn, en-
coded as a RegularChain<RN,SMQP> object T, we can compute the intersection
of the variety V (p) and the quasi-component W (T ) by calling

vector<RegularChain<RN,SMQP>> dec;

dec = T.intersect(p);

For example, suppose that T is the result of the example for triangularize

above. Then we can compute the intersection of the complex unit circle and the
line x = y with the code

dec[0].upper(Symbol("z"),T);

which defines T to be the regular chain formed by removing the z-component
from the previous result (since our present computation is really in the complex
xy-plane), followed by the code

SMQP p("x-y");

dec = T.intersect(p);

for (auto d : dec)

d.display();



which produces the output

/

| x - y = 0

<

| 2*y^2 - 1 = 0

\

so that the intersection is just the points (x, y) = (±1/
√

2,±1/
√

2), as expected.

4 regularize

The method regularize is a routine that will take a polynomial p and a regu-
lar chain T and decompose T into regular chains of two types: components on
which p is regular modulo sat(T ), the regular case; and components on which
p is zero modulo sat(T ), the singular case. The return type of regularize is
a vector of PolyChainPair<PolyType,RegularChainType> objects. If A is a
PolyChainPair object, then we can access the polynomial as A.poly and the
regular chain as A.chain. For the singular components returned by regularize,
A.poly is zero, and for the regular components it is non-zero.

For example, suppose that a regular chain T has two polynomials, T3 =
x2 + y2 − z, describing an elliptic paraboloid, and T2 = y(y − 1), describing a
parabolic cylinder. Then suppose that we want to determine the regular and
singular components of T for p = xy, a saddle surface. Then we can do so with
the following code:

vector<Symbol> R = {’x’,’y’,’z’};

T = RegularChain<RN,SMQP>(R); // Empty chain with ordered ring R

T += SMQP("x^2+y^2-z");

T += SMQP("y*(y-1)");

p = SMQP("x*y");

vector<PolyChainPair<SMQP,RegularChain<RN,SMQP>>> components;

components = T.regularize(p);

cout << "Regular Components" << endl;

for (auto c : components) {

if (!c.poly.isZero())

c.chain.display();

}

cout << "Singular Components" << endl;

for (auto c : components) {

if (c.poly.isZero())

c.chain.display();

}

which produces the output



Regular Components

/

| x^2 - z + 1 = 0

<

| y - 1 = 0

\

Singular Components

/

| x^2 - z = 0

<

| y = 0

\

Thus, p = xy is regular on the parabola z = x2+1 in the plane y = 1 and singular
on the parabola z = x2 in the xz plane.


	RegularChain Class Description
	 triangularize
	intersect
	regularize

