
Zero-Dimensional Regular Chains in bpas

1 ZeroDimensionalRegularChain Class Description

The ZeroDimensionalRegularChain class handles the special case of regular
chains of dimension zero (where there are the same number of equations as
variables in the chain). The zero sets of zero-dimensional regular chains are
therefore sets of points. Because zero-dimensional regular chains are particu-
lar kinds of regular chains, the ZeroDimensionalRegularChain class inherits
from the RegularChain class. This special case allows for specialized algo-
rithms that are more efficient than those needed for positive dimension, as
well as being of mathematical interest in its own right, as we discuss briefly
below. Specialized versions of intersect and regularize are provided by
ZeroDimensionalRegularChain, which behave in precisely the same way as
the arbitrary dimension routines, except that the underlying regular chain has
ZeroDimensionalRegularChain type. The usage of these routines is illustrated
below.

A zero-dimensional regular chain with polynomials in K[x1, . . . , xn] actu-
ally encodes a tower of field extensions of the base field K. In case that a
zero-dimensional regular chain is strongly normalized, so that the initials of all
polynomials in the chain are in the base field, then the regular chain defines a
direct product of fields. Thus, in addition to being a special case of arbitrary
dimension regular chains, the zero-dimensional case is of independent mathe-
matical interest. We will not consider the mathematics here, except to note
that for zero-dimensional regular chains T , W (T ) = V (T ) since sets of points
are Zariski-closed. For an explanation of the concept of regular chain see the
RegularChain class description.

The most important differences between the ZeroDimensionalRegular-

Chain class and the RegularChain class have to do with the fact that being
zero-dimensional imposes a strict condition (all variables are algebraic vari-
ables) that most RegularChain objects do not satisfy. This impacts the con-
structors for the class and certain routines, such as lower and upper. The
zero-dimensionality requirement is handled by not allowing the direct construc-
tion of zero-dimensional regular chains with an underlying triangular set of fixed
type. To allow this would allow the creation of ZeroDimensionalRegularChain
objects that are not actually zero-dimensional because not all the variables are
algebraic. Accordingly, only variable type ZeroDimensionalRegularChain ob-
jects can be created directly from the constructors of the class, and each of these

1



constructors forces the created object to be genuinely zero-dimensional.
This leads to an important restriction on how ZeroDimensionalRegular-

Chain objects are created with the class. Because the objects are required to
be zero-dimensional, it is not possible to add a polynomial to a variable type
ZeroDimensionalRegularChain that does not have exactly one new variable
v, i.e., v is neither in the algebraic variables list nor the transcendentals list.
Accordingly, the order in which polynomials are added to the chain matters. As
such, polynomials with the least significant variables must be added first. This
is seen in the examples of the usage of intersect and regularize below.

Even though this is the strictly mathematically correct way to handle zero-
dimensional regular chains, there are situations where it is convenient to treat
a positive-dimensional regular chain as zero-dimensional, but only when it is
meaningful to do so. This is particularly important in the algorithms of the
RegularChain class, so that the ZeroDimensionalRegularChain routines can
be called without forcing a copy of the entire RegularChain object. For this
reason, the copy and move constructors that take a fixed type RegularChain as
input allow the creation of technically positive-dimensional ZeroDimensional-
RegularChain objects that are morally zero-dimensional (no free variables ap-
pear in the polynomials of the chain).

The other main situation where ZeroDimensionalRegularChain routines
behave differently is for upper and lower. Here, lower is required to return a
zero-dimensional regular chain, since lower on a zero-dimensional regular chain
is always zero-dimensional. The routine upper, however, is required to return a
regular chain, since upper on a zero-dimensional regular chain may be positive-
dimensional. In addition to this, the behaviour of lower is different depending
on whether the underlying TriangularSet of the ZeroDimensionalRegular-

Chain is fixed or variable. If it is fixed, the ZeroDimensionalRegularChain

returned by lower may only be morally zero-dimensional.

2 intersect

The method intersect of the ZeroDimensionalRegularChain class allows the
computation of the intersection of the points of a zero-dimensional regular chain
and the variety of a polynomial p. For a polynomial p ∈ Q[x1, . . . , xn], encoded
as an SMQP object p, and a zero-dimensional regular chain T over the ambi-
ent space defined by the variable ordering x1 < x2 < ⋯ < xn, encoded as a
ZeroDimensionalRegularChain<RN,SMQP> object T, we can compute the inter-
section of the variety V (p) and the quasi-component W (T ) by calling

vector<ZeroDimensionalRegularChain<RN,SMQP>> dec;

dec = T.intersect(p);

For example, if p = xy, which means that x = 0 or y = 0 on V (p), and the
zero-dimensional regular chain in Q[y, x] is T = {y2 + yx, x2

+ x}, which picks
out the three points (x, y) = (0,0), (0,−1), (−1,−1), then we can compute the
intersection of V (p) and W (T ) with the following code



ZeroDimensionalRegularChain<RN,SMQP> T;

T += SMQP("x^2+x");

T += SMQP("y^2-y*x");

vector<ZeroDimensionalRegularChain<RN,SMQP>> dec;

SMQP p("x*y");

dec = T.intersect(p);

for (auto d : dec)

d.display();

which produces the output

/

| y = 0

<

| x + 1 = 0

\

/

| y = 0

<

| x = 0

\

so that the intersection is just the points (x, y) = (0,0), (0,−1), as expected.

3 regularize

The method regularize is a routine that will take a polynomial p and a regular
chain T and decompose T into regular chains of two types: components on
which p is regular modulo sat(T ), the regular case; and components on which
p is zero modulo sat(T ), the singular case. The return type of regularize is
a vector of PolyChainPair<PolyType,RegularChainType> objects. If A is a
PolyChainPair object, then we can access the polynomial as A.poly and the
regular chain as A.chain. For the singular components returned by regularize,
A.poly is zero, and for the regular components it is non-zero.

For example, reconsidering the example for intersect above, suppose that
T = {y2 + yx, x2

+ x} and suppose that we want to determine the regular and
singular components of T for p = xy. Then we can do so with the following
code:

vector<Symbol> R = {’x’,’y’,’z’};

vector<PolyChainPair<SMQP,ZeroDimensionalRegularChain<RN,SMQP>>>

components;

components = T.regularize(p);

cout << "Regular Components" << endl;

for (auto c : components) {

if (!c.poly.isZero())

c.chain.display();



}

cout << "Singular Components" << endl;

for (auto c : components) {

if (c.poly.isZero())

c.chain.display();

}

which produces the output

Regular Components

/

| y + 1 = 0

<

| x + 1 = 0

\

Singular Components

/

| y = 0

<

| x + 1 = 0

\

/

| y = 0

<

| x = 0

\

Thus, the regular components are those where p ≠ 0 but the polynomials of T
are zero (but the initials are nonzero), i.e., where p is regular modulo sat(T ),
which is just (x, y) = (−1,−1) in this case. The singular components are then
those where both p = xy = 0 and the polynomials of T are zero (but the ini-
tials are nonzero), i.e., the intersection of V (p) and W (T ). Since the singular
components are always the intersection of V (p) and W (T ) in dimension zero,
regularize is actually called by intersect to compute intersections.
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