
On the Complexity and Parallel Implementation of

Hensel’s Lemma and Weierstrass Preparation

Alexander Brandt, Marc Moreno Maza

Department of Computer Science, The University of Western Ontario,
London, Canada

abrandt5@uwo.ca, moreno@csd.uwo.ca

Abstract

Hensel’s lemma, combined with repeated applications of Weierstrass prepa-
ration theorem, allows for the factorization of polynomials with multivariate
power series coefficients. We present a complexity analysis for this method
and leverage those results to guide the load-balancing of a parallel imple-
mentation to concurrently update all factors. In particular, the factorization
creates a pipeline where the terms of degree k of the first factor are com-
puted simultaneously with the terms of degree k − 1 of the second factor,
etc. An implementation challenge is the inherent irregularity of computa-
tional work between factors, as our complexity analysis reveals. Additional
resource utilization and load-balancing is achieved through the parallelization
of Weierstrass preparation. Experimental results show the efficacy of this
mixed parallel scheme, achieving up to 9× speedup on 12 cores.

Keywords: Formal power series · Weierstrass preparation · Hensel’s lemma
· Hensel factorization · Parallel processing · Parallel pipeline

1 Introduction

Factorization via Hensel’s lemma, or simply Hensel factorization, provides a mech-
anism for factorizing univariate polynomials with multivariate power series coeffi-
cients. In particular, for a monic square-free multivariate polynomial in (X1, . . . , Xn, Y),
one can compute its roots with respect to Y as power series in (X1, . . . , Xn). For
a bivariate polynomial in (X1, Y), the classical Newton-Puiseux method is known
to compute the polynomial’s roots with respect to Y as univariate Puiseux series
in X1. The transition from power series to Puiseux series arises from handling the
non-monic case.

The Hensel-Sasaki Construction or Extended Hensel Construction (EHC) was
proposed in [13] as an efficient alternative to the Newton-Puiseux method for the
case of univariate coefficients. In the same paper, an extension of the Hensel-Sasaki
construction was proposed for multivariate coefficients. In [1], EHC was improved
in terms of complexity estimates and practical implementation.

1

In this paper we present a method of Hensel factorization based on repeated
applications of Weierstrass preparation theorem. This method proceeds by a lazy
evaluation scheme, meaning that more power series terms can be computed on
demand without having to restart the computation. This contrasts with a truncated
implementation where only terms up to a pre-determined degree are computed. The
complexity of this proposed method is also measured.

Denote by M(n) a polynomial multiplication time [16, Ch. 8], that is, the
number of operations sufficient to multiply two polynomials of degree n. Let f ∈
K[[X1]][Y] have degree dy in Y and total degree d, where K is algebraically closed.
Our method computes the first k terms of all factors of f within O(d3

yk + d2
yk

2)
operations in K. Moreover, we conjecture in Section 4 that our method can achieve
O(d3

yk+d2
yM(k) log k) operations in K through relaxed algorithms [15]. The Hensel-

Sasaki Construction of [1] computes all factors in O(d3M(d)+k2dM(d)). Kung and
Traub show that, over the complex numbers C, the Newton-Puiseux method can be
performed in O(d2kM(k)) (resp. O(d2M(k))) operations in C using a linear lifting
scheme (resp. quadratic lifting scheme) [10]. This complexity is lowered to O(d2k)
by Chudnovsky and Chudnovsky in [6].

Nonetheless, the formulation of EHC in [1] is shown to be practically much more
efficient than the method of Kung and Traub. Further, our serial implementation
of lazy Hensel factorization has already been shown in [5] to be orders of magnitude
faster than the implementation of EHC in [1]. We now extend our work by consid-
ering parallel processing techniques to further improve the performance of our lazy
Hensel factorization. Our complexity analysis is very precise, giving the number
of operations required to update each factor individually. This information helps
guide our parallel implementation.

In Hensel factorization, computing power series terms of each factor relies on
the computed terms of the previous factor. In particular, the output of one Weier-
strass preparation becomes the input to another. These successive dependencies
naturally lead to a parallel pipeline or chain of producer-consumer pairs. Within
numerical linear algebra, parallel pipelines have already been employed in parallel
implementations of singular value decomposition [9], LU decomposition, and Gaus-
sian elimination [12]. Meanwhile, to the best of our knowledge, the only use of
parallel pipeline in symbolic computation is [3], which examines a parallel imple-
mentation of triangular decomposition of polynomial systems.

However, in our case, work reduces with each application of Weierstrass, re-
sulting in inherent load-balancing issues where each stage of the pipeline requires
less work, limiting throughput. To overcome this challenge, we first make use of
our complexity estimates to dynamically estimate the work required to update each
factor. Second, we compose parallel processing schemes by applying the celebrated
map-reduce pattern within Weierstrass preparation, and thus within a stage of
the pipeline. Assigning multiple threads to a single pipeline stage is thus used to
improve load-balancing and increase throughput. Experimental results show this
composition is effective, leading to parallel speedup of up to 9× on a 12-core ma-
chine.

The remainder of this paper is organized as follows. Section 2 reviews math-
ematical background and notations. Further background on our lazy power series
of [5] is presented in Section 3. Algorithms and complexity analyses of Weierstrass
preparation and Hensel factorization are given in Section 4. Section 5 describes

2

the parallel processing schemes of Weierstrass preparation and Hensel factoriza-
tion. The practical use of our complexity estimates for dynamic scheduling is also
discussed. Finally, Section 6 presents experimental data.

2 Background

We take this section to present basic concepts and notation of multivariate power
series and univariate polynomials over power series (UPoPS). Further, we present
constructive proofs for the theorems of Weierstrass preparation and Hensel’s lemma
for univariate polynomials over power series. Algorithms for Weierstrass preparation
and factorization of UPoPS via Hensel’s lemma are adapted from these proofs and
later presented in Section 4.1 and Section 4.2, respectively. Further introductory
details may be found in the book of G. Fischer [7].

2.1 Power Series and Univariate Polynomials over Power Se-
ries

Let K be an algebraically closed field. We denote by K[[X1, . . . , Xn]] the ring of
formal power series with coefficients in K and with variables X1, . . . , Xn.

Let f =
∑
e∈Nn aeX

e be a formal power series, where ae ∈ K, Xe = Xe1
1 · · ·Xen

n ,
(e1, . . . , en) ∈ Nn, and |e| = e1 + · · · + en. Let k ∈ N. The homogeneous part and
polynomial part of f in degree k are denoted by f(k) and f (k), and are defined by

f(k) =
∑
|e|=k aeX

e and f (k) =
∑
i≤k f(i). The order of a formal power series f ,

denoted by ord(f), is defined as min{i | f(i) 6= 0}, if f 6= 0, and as ∞ otherwise.
Recall several properties regarding power series. First, K[[X1, . . . , Xn]] is an

integral domain. Second, the set M = {f ∈ K[[X1, . . . , Xn]] | ord(f) ≥ 1} is the
only maximal ideal of K[[X1, . . . , Xn]]. Third, for all k ∈ N, we have Mk = {f ∈
K[[X1, . . . , Xn]] | ord(f) ≥ k}. Note that for n = 0 we have M = 〈0〉. Further,
note that f(k) ∈ Mk \Mk+1 and f(0) ∈ K. Fourth, a unit u ∈ K[[X1, . . . , Xn]] has
ord(u) = 0 or, equivalently, u 6∈ M.

Let f, g, h, p ∈ K[[X1, . . . , Xn]]. The sum and difference f = g ± h is given
by
∑
k∈N (g(k) ± h(k)). The product p = g h is given by

∑
k∈N

(
Σi+j=k g(i)h(j)

)
.

Notice that the these formulas naturally suggest a lazy evaluation scheme, where
the result of an arithmetic operation can be incrementally computed for increasing
precision or, equivalently, for homogeneous parts of increasing degree. A power
series f is said to be known to precision k ∈ N, when f(i) is known for all 0 ≤ i ≤ k.
Such an update function, parameterized by k, for addition or subtraction is simply
f(k) = g(k) ± h(k); an update function for multiplication is p(k) =

∑k
i=0 g(i)h(k−i).

Lazy schemes for power series are discussed further in Section 3. From these update
formulas, the following observation follows.

Observation 1 (power series arithmetic) Let f, g, h, p ∈ K[[X1]] with f = g±h
and p = g h. f(k) = g(k) ± h(k) can be computed in 1 operation in K. p(k) =∑k
i=0 g(i)h(k−i) can be computed in 2k − 1 operations in K.

Now, let f, g ∈ A[Y] be univariate polynomials over power series where, A =

K[[X1, . . . , Xn]]. Writing f =
∑d
i=0 aiY

i, for ai ∈ A, we have that the degree of

3

f (denoted deg(f, Y) or simply deg(f)) is d. Note that arithmetic operations for
UPoPS are easily inherited from the arithmetic of its power series coefficients. A
UPoPS is said to be known up to precision k if each of its power series coefficients
are known up to precision k. A UPoPS f is said to be general (in Y) of order j if f

modM[Y] has order j when viewed as a power series. That is, for f =
∑d
i=0 aiY

i,
ai ∈M for 0 ≤ i < j

2.2 Weierstrass Preparation Theorem and
Factorization via Hensel’s Lemma

The Weierstrass Preparation Theorem (WPT) is fundamentally a theorem regard-
ing factorization. In the context of analytic functions, WPT implies that any an-
alytic function resembles a polynomial in the vicinity of the origin. Generally,
WPT can be stated for power series over power series, i.e. for the power series
K[[X1, . . . , Xn]][[Y]] = A[[Y]]. This can be used to prove that A is both a unique
factorization domain and a Noetherian ring. See [5] for a proof of WPT in the case
of A[[Y]]. Here, it is sufficient to state the theorem for UPoPS.

We begin with a simple lemma which serves as the basis of our eventual proof
of WPT and our implementation.

Lemma 1 Let f, g, h ∈ K[[X1, . . . , Xn]] such that f = gh. Let fi = f(i), gi =
g(i), hi = h(i). If f0 = 0 and h0 6= 0, then gk is uniquely determined by f1, . . . , fk
and h0, . . . , hk−1

Proof. We proceed by induction on k. Since f0 = g0h0 = 0 and h0 6= 0 both
hold, the statement holds for k = 0. Now let k > 0, assuming the hypothesis
holds for k − 1. To determine gk it is sufficient to expand f = gh modulo Mk+1:
f1 + f2 + · · · + fk = g1h0 + (g1h1 + g2h0) + · · · + (g1hk−1 + · · · + gk−1h1 + gkh0);
and, recalling h0 ∈ K \ {0}, we have gk = 1/h0 (fk − g1hk−1 − · · · − gk−1h1) . �

Theorem 1 (Weierstrass Preparation Theorem) Let f =
∑d+m
i=0 aiY

i ∈ K[[X1, . . . , Xn]][Y]
where d ≥ 0 is the smallest integer such that ad 6∈ M and 0 ≤ m ∈ N. Assume that
f 6≡ 0 mod M[Y]. Then, there exists a unique pair p, α satisfying the following:

(i) f = pα,

(ii) α is an invertible element of K[[X1, . . . , Xn]][[Y]],

(iii) p is a monic polynomial of degree d,

(iv) writing p = Y d + bd−1Y
d−1 + · · · b1Y + b0, we have bd−1, . . . , b0 ∈M.

Proof. If n = 0, writing f = αY d with α =
∑m
i=0 ai+dY

i proves the exis-
tence of the decomposition. Now, assume n ≥ 1. Write α =

∑m
i=0 ciY

i, with
ci ∈ K[[X1, . . . , Xn]]. We will determine b0, . . . , bd−1, c0, . . . , cm modulo successive
powers of M. Since we require α to be a unit, c0 6∈ M By definition, a0, . . . , ad−1

are all 0 mod M. Equating coefficients in f = pα we have:

4

a0 = b0c0
a1 = b0c1 + b1c0

...
ad−1 = b0cd−1 + b1cd−2 + · · ·+ bd−2c1 + bd−1c0
ad = b0cd + b1cd−1 + · · ·+ bd−1c1 + c0

...
ad+m−1 = bd−1cm + cm−1

ad+m = cm

(1)

and thus b0, . . . , bd−1 are also all 0 mod M. Then, ci ≡ ad+i mod M for all
0 ≤ i ≤ m. All coefficients have thus been determined mod M. Let k > 0 be an
integer. Assume, inductively, that all b0, . . . , bd−1, c0, . . . , cm have been determined
mod Mk, we will now determine them mod Mk+1.

It follows from Lemma 1 that b0 can be determined modMk+1 from the equation
a0 = b0c0. Consider now the second equation. Since b0 is known mod Mk+1, and
b0 ∈M, the product b0c1 is also known modMk+1.Then, we can determine b1 using
Lemma 1 and the formula a1− b0c1 = b1c0. This procedure follows for b2, . . . , bd−1.
With b0, . . . , bd−1 known modMk+1 each c0, . . . , cm can be determined modMk+1

from the last m+ 1 equations. �

One requirement of Weierstrass Preparation Theorem is that f 6≡ 0 mod M[Y].
That is to say, f cannot vanish at (X1, . . . , Xn) = (0, . . . , 0) and, specifically, f is
general of order d = deg(p). However, one can always apply a suitable linear change
in coordinates to meet this requirement. See Algorithm 2 in Section 4. Weierstrass
preparation provides a mechanism for factorizing a UPoPS into two factors. One
may then apply WPT several times to fully factorize a UPoPS. The existence of
such a factorization is given by Hensel’s lemma for UPoPS.

Theorem 2 (Hensel’s Lemma) Let f = Y d+
∑d−1
i=0 aiY

i be a monic polynomial
with ai ∈ K[[X1, . . . , Xn]]. Let f̄ = f(0, . . . , 0, Y) = (Y − c1)d1(Y − c2)d2 · · · (Y −
cr)

dr for c1, . . . , cr ∈ K and positive integers d1, . . . , dr. Then, there exists f1, . . . , fr ∈
K[[X1, . . . , Xn]][Y], all monic in Y, such that:

(i) f = f1 · · · fr,

(ii) deg(fi, Y) = di for 1 ≤ i ≤ r, and

(iii) f̄i = (Y − ci)di for 1 ≤ i ≤ r.

Proof. We proceed by induction on r. For r = 1, d1 = d and we have f1 = f , where
f1 has all the required properties. Now assume r > 1. A change of coordinates in
Y , sends cr to 0. Define g(X1, . . . , Xn, Y) = f(X1, . . . , Xn, Y + cr) = (Y + cr)

d +
ad−1(Y + cr)

d−1 + · · ·+ a0. By construction, g is general of order dr and WPT can
be applied to obtain g = pα with p being of degree dr and p̄ = Y dr . Reversing
the change of coordinates we set fr = p(Y − cr) and f∗ = α(Y − cr), and we
have f = f∗fr. fr is a monic polynomial of degree dr in Y with f̄r = (Y − cr)dr
. Moreover, we have f̄∗ = (Y − c1)d1(Y − c2)d2 · · · (Y − cr−1)dr−1 . The inductive
hypothesis applied to f∗ implies the existence of f1, . . . , fr−1. �

5

2.3 Parallel Patterns

We are concerned with thread-level parallelism, where multiple threads of execution
within a single process enable concurrent processing. Our parallel implementation
employs several so-called parallel patterns—algorithmic structures and organiza-
tions for efficient parallel processing. We review a few patterns: map, producer-
consumer, and pipeline. See [11] for a detailed discussion.

2.3.1 Map

The map pattern applies a function to each item in a collection, simultaneously
executing the function on each independent data item. Often, the application of a
map produces a new collection with the same shape as the input collection. Alter-
natively, the map pattern may modify each data item in place or, when combined
with the reduce pattern, produce a single data item. The reduce pattern combines
data items pair-wise using some combiner function.

When data items to be processed outnumber available threads, the map pattern
can be applied block-wise, where the data collection is (evenly) partitioned and each
thread assigned a partition rather than a single data item.

Where a for loop has independent iterations, the map pattern is easily applied
to execute each iteration of the loop concurrently. Due to this ubiquity, the map
pattern is often implicit with such parallel for loops simply being labelled paral-
lel for. In this way, the number of threads to use and the partitioning of the data
collection can be a dynamic property of the algorithm.

2.3.2 Producer-Consumer and Asynchronous Generators

The producer-consumer pattern describes two functions connected by a queue. The
producer creates data items, pushing them to the queue, meanwhile the consumer
processes data items, pulling them from the queue. Where both the creation of
data items and their processing requires substantial computational work, producer
and consumer may operate concurrently, with the queue facilitating inter-thread
communication.

A generator or iterator is a special kind of co-routine function which yields
data elements one at a time, rather than many together as a collection; see, e.g. [14,
Ch. 8]. Combining the producer-consumer pattern with generators allows for an
asynchronous generator, where the generator function is the producer and the calling
function is the consumer. The intermediary queue allows the generator to produce
items meanwhile the calling function processes them.

2.3.3 Pipeline

The pipeline pattern is a sequence of stages, where the output of one stage is used as
the input to another. Two consecutive stages form a producer-consumer pair, with
internal stages being both a consumer and a producer. Concurrency arises where
each stage of the pipeline may be executed in parallel. Moreover, the pipeline
pattern allows for earlier data items to flow from one stage to the next without
waiting for later items to become available.

6

In terms of the latency of processing a single data item, a pipeline does not im-
prove upon its serial counterpart. Rather, a parallel pipeline improves throughput,
the amount of data that can be processed in a given amount of time. Throughput
is limited by the slowest stage of a pipeline, and thus special care must be given to
ensure each stage of the pipeline runs in nearly equal time.

A pipeline may be implicitly and dynamically created where an asynchronous
generator consumes data from another asynchronous generator. The number of
asynchronous generator calls, and thus the number of stages in the pipeline, can be
dynamic to fit the needs of the application at runtime.

3 Lazy Power Series

As we have seen in Section 2.1, certain arithmetic operations on power series nat-
urally lead to a lazy evaluation scheme. In this scheme, homogeneous parts of a
power series are computed one at a time for increasing degree, as requested. Our
implementation of lazy power series, lazy Weierstrass preparation, and lazy Hensel
factorization is detailed in [5]. For the remainder of this paper, it is sufficient to
understand that lazy power series rely on the following three principles:

(i) the availability of an update function to compute the homogeneous part of a
particular degree;

(ii) the capturing of parameters required for that update function; and

(iii) the storage of previously computed homogeneous parts.

Where a power series is constructed from arithmetic operations on other power
series, the latter may be called the ancestors of the former. For example, the power
series f = g h has ancestors g and h and an update function f(k) =

∑k
i=0 g(i)h(k−i).

In implementation, and in the algorithms which follow in this paper, we can thus
augment a power series with: (i) its current precision; (ii) references to its ancestors,
if any; and (iii) a reference to its update function.

Under this scheme, we make three remarks. Firstly, a power series can be lazily
constructed using essentially no work. The initialization of a lazy power series only
requires specifying the appropriate update function and storing references to its
ancestors. Secondly, specifying an update function and the ancestors of a power
series is sufficient for defining and computing that power series. Thirdly, when
updating a particular power series, its ancestors can automatically and recursively
be updated as necessary using their own update functions.

Hence, in the algorithms which are presented in the following sections, it is suf-
ficient to define the update function for a power series. For example, Algorithm 1
simultaneously updates p and α as produced from a Weierstrass preparation. Fur-
ther, operations on power series should be understood to be only the initialization
of a power series, with no terms of the power series yet computed; e.g., Algorithm 3
for Hensel factorization.

7

4 Algorithms and Complexity

In this section we present algorithms for Weierstrass preparation and Hensel fac-
torization adapted from their constructive proofs; see Theorem 1 and Theorem 2,
respectively. For each algorithm we analyze its complexity. These results will guide
our eventual parallel variations described later in Section 5.

4.1 Weierstrass Preparation

From the proof of Weierstrass preparation (Theorem 1), we derive WeierstrassUp-
date (Algorithm 1). That proof proceeds modulo increasing powers of the maximal
idealM, which is equivalent to computing homogeneous parts of increasing degree,
just as required for our lazy power series. For an application of Weierstrass prepa-
ration producing p and α, this WeierstrassUpdate acts as the update function
for p and α, updating both simultaneously.

By rearranging the terms of the first d equations of (1) and applying Lemma 1 we
obtain “phase 1” of WeierstrassUpdate, where each coefficient of p is updated.
By rearranging the terms of the next m+ 1 equations of (1) we obtain “phase 2” of
WeierstrassUpdate, where each coefficient of α is updated. From Algorithm 1,
it is then routine to show the following two observations, which together lead to
Theorem 3.

Algorithm 1 WeierstrassUpdate(k, f , p, α)

Input: f =
∑d+m

i=0 aiY
i, p = Y d +

∑d−1
i=0 biY

i, α =
∑m

i=0 ciY
i, ai, bi, ci ∈ K[[X1, . . . , Xn]] sat-

isfying Theorem 1, with b0, . . . , bd−1, c0, . . . , cm known modulo Mk, M the maximal ideal of
K[[X1, . . . , Xn]].

Output: b0, . . . , bd−1, c0, . . . , cm known modulo Mk+1, updated in-place.

. phase one
1: for i = 0 to d− 1 do
2: Fi(k) := ai(k)

3: if i ≤ m then
4: for j = 0 to i− 1 do
5: Fi(k) := Fi(k) − (bj ci−j)(k)

6: else
7: for j = 0 to m− 1 do
8: Fi(k) := Fi(k) − (bi+j−m cm−j)(k)

9: s := 0
10: for j = 1 to k − 1 do
11: s := s + bi(k−j) × c0(j)

12: bi(k) :=
(
Fi(k) − s

)
/c0(0)

. phase two
13: cm(k) := ad+m(k)

14: for i = 1 to m do
15: if i ≤ d then
16: cm−i(k) := ad+m−i(k) −

∑i
j=1 (bd−jcm−i+j)

(k)

17: else
18: cm−i(k) := ad+m−i(k) −

∑d
j=1 (bd−jcm−i+j)

(k)

Observation 2 (Weierstrass phase 1 complexity) For WeierstrassUpdate
over K[[X1]][Y], computing the homogeneous part of degree k for bi with 0 ≤ i < d
requires 2ki+ 2k − 1 operations in K if i ≤ m, or 2km+ 2k − 1 operations in K if
i > m.

8

Observation 3 (Weierstrass phase 2 complexity) For WeierstrassUpdate
over K[[X1]][Y], computing the homogeneous part of degree k for cm−i, 0 ≤ i < m,
requires 2ki operations in K if i ≤ d, or 2kd operations in K if i > d.

Theorem 3 (Weierstrass preparation complexity) For Weierstrass prepara-
tion producing f = pα with f, p, α ∈ K[[X1]][Y], with deg(p) = d, and deg(α) = m,
computing p and α up to precision k requires dmk2 + dk2 + dmk operations in K.

Proof. Let i be the index of a coefficient of p or α. As a first step, consider the
cost of computing the homogeneous part of degree k of each coefficient of p and α.
First consider i < t = min(d,m), that is, b0, . . . , bt, c0, . . . , ct. From Observation 2
we have that computing the kth homogeneous part alone requires 2ki + 2k − 1
operations in K for each bi. From Observation 3 we have 2ki operations for each
ci. For 0 ≤ i < t, this yields a total of 2kt2 + 2kt − t. Next, we have three cases:
(a) t = d = m, (b) m = t < i < d, or (c) d = t < i < m. In case (a) there is no
additional work. In case (b), phase 1 contributes an additional (d−m)∗(2km+2k−1)
operations and phase 2 contributes no additional operations. In case (c), phase 2
contributes an additional (m − d) ∗ (2kd) operations and phase 1 contributes no
additional operations. In all cases, the total number of operations to update p and
α from precision k− 1 to precision k is 2dmk+ 2dk− d. Finally, to compute p and
α up to precision k requires dmk2 + dk2 + dmk operations in K. �

A useful consideration is when the input to Weierstrass preparation is monic.
This necessarily makes α monic, and the overall complexity of Weierstrass prepa-
ration is reduced. This case arises for each application of Weierstrass preparation
in Hensel factorization. The following corollary proves this, following Theorem 3.

Corollary 1 (Weierstrass preparation complexity for monic input) For an
application of Weierstrass preparation producing f = pα with f, p, α ∈ K[[X1]][Y],
f monic in Y , deg(p) = d and deg(α) = m, computing p and α up to precision k
requires dmk2 + dmk operations in K.

Proof. If f is monic then α is necessarily monic and cm = 1. For i ≥ m we save
computing (bi−mcm)(k) for the update of bi(k). For 1 ≤ i ≤ d we save computing

(bd−jcm−i+j)(k) for j = i for the update of each cm−i(k). First, consider updating

p and α from precision k − 1 to precision k. Let t = min(d,m). We have three
cases: (a) t = d = m, (b) m = t < i < d, or (c) d = t < i < m. In case (a) we
save d(2k − 1) operations in phase 2, as compared to case (a) from the proof of
Theorem 3. In case (b) we save (d−m)(2k−1) operations in phase 1 and m(2k−1)
operations in phase 2. In case (c) we save d(2k − 1) operations in phase 2. In all
cases we save a total of d(2k − 1) operations, resulting in 2dmk operations in K to
update p and α from precision k− 1 to precision k. Finally, to compute p and α up
to precision k requires dmk2 + dmk operations in K. �

4.2 Hensel Factorization

Before we begin Hensel factorization, we will first see how to perform a translation,
or Taylor shift, by lazy evaluation. For f =

∑d
i=0 aiY

i ∈ K[[X1, . . . , Xn]][Y] and
c ∈ K, computing f(Y + c) begins by pre-computing the coefficients of the binomial

9

Algorithm 2 TaylorShiftUpdate(k, f , S, i)

Input: For f =
∑d

j=0 ajY
j , g = f(Y + c) =

∑d
j=0 bjY

j , obtain the homogeneous part of degree k for

bi. S ∈ K(d+1)×(d+1) is a lower triangular matrix of coefficients of (Y + c)j for j = 0, . . . , d,
Output: bi(k), the homogeneous part of degree k of bi.

1: bi(k)
:= 0

2: for ` = i to d do
3: j := `+ 1− i
4: bi(k) := bi(k) + S`+1,j× a`(k)

5: return bi(k)

expansions (Y + c)j for 0 ≤ j ≤ d. These coefficients are stored in a matrix

S. Then, each coefficient of f(Y + c) =
∑d
i=0 biY

i is a linear combination of the
coefficients of f scaled by the appropriate elements of S. Since those elements of S
are only elements of K, this linear combination does not change the degree and, for
some integer k, bi(k) relies only on a`(k) for i ≤ ` ≤ d. Computing bi(k) from this
linear combination is described as TaylorShiftUpdate in Algorithm 2; and its
complexity is easily found and stated as Observation 4.

Observation 4 (Taylor shift complexity) For a UPoPS f =
∑d
i=0 aiY

i ∈ K[[X1]][Y],
computing the homogeneous part of degree k for all coefficients of the shifted UPoPS
f(Y + c) requires d2 + 2d+ 1 operations in K.

Having defined update functions for Weierstrass preparation and Taylor shift,
lazy Hensel factorization is immediate. Hensel factorization requires no additional
update function, only the initialization of the appropriate chain of ancestors. Algo-
rithm 3 shows this initialization of the factors and their ancestors through repeated
applications of Taylor shift and Weierstrass preparation. Note that factors are

Algorithm 3 HenselFactorization(f)

Input: f = Y d +
∑d−1

i=0 aiY
i, ai ∈ K[[X1, . . . , Xn]].

Output: f1, . . . , fr satisfying Theorem 2.
1: f̄ = f(0, . . . , 0, Y)
2: (c1, . . . , cr), (d1, . . . , dr) := roots and their multiplicities of f̄
3: c1, . . . , cr := sort([c1, . . . , cr]) by increasing multiplicity . see Theorem 5

4: f̂1 = f
5: for i = 1 to r − 1 do
6: gi := f̂i(Y + ci)
7: pi, αi := WeierstrassPreparation(g)
8: fi := pi(Y − ci)
9: f̂i+1 := αi(Y − ci)

10: fr := f̂r
11: return f1, . . . , fr

f g1 α1

p1 f1

f̂2
g2 α2

p2 f2

f̂3
g3 α3

p3 f3

f4
+c1

−c1

−c1 +c2

−c2

−c2 +c3

−c3

−c3

Figure 1: The ancestor chain for the Hensel factorization f = f1f2f3f4. Updating f1 requires
updating g1, p1, α1; then updating f2 requires updating f̂2, g2, p2, α2; then updating f3 requires

updating f̂3, g3, p3, α3; then updating f4 requires only its own Taylor shift. These groupings form
the eventual stages of the Hensel pipeline (Algorithm 8).

10

sorted by increasing degree; this enables better load-balancing in an eventual par-
allel implementation, see Theorem 5 and Algorithms 7–9. Fig. 1 shows the chain
of ancestors created for the factorization f = f1f2f3f4. Moreover, the figure shows
the grouping of ancestors required to update each factor; the complexity of which
is shown in Theorem 5. First, however, we analyze the complexity of HenselFac-
torization for the common case where each factor has degree 1.

Theorem 4 (Hensel factorization complexity for simple roots) Applying Hen-
selFactorization on f ∈ K[[X1]][Y], where deg(f) = d, with all resulting factors
having degree 1, and updating each factor to precision k, requires 2/3 d3k+1/2 d2k2 +
5/2 d2k − 1/2 dk2 + 35/6 dk − 9k operations in K.

Proof. For each factor except the last, HenselFactorization requires one Tay-
lor shift, one Weierstrass preparation, and two more Taylor shifts. For the first
factor we have that the first Taylor shift is of degree d, the Weierstrass preparation
produces p1 and α1 of degree 1 and d − 1, respectively, and then the two Taylor
shifts are of degree 1 and d− 1. This pattern continues for each factor but the last.
fd is obtained from the shifted αd−1. The result is: a shift of degree d − i + 1 for

i = 1, . . . , d − 1 (for each f̂ i), d − 1 shifts of degree 1 (for each pi), and a shift of
degree d−i for i = 1, . . . , d−1 (for each αi). From Observation 4, obtaining a Taylor

shift of degree d′ to precision k requires d′
2
k + 2d′k + k operations in K. Summing

over each group of Taylor shifts gives, respectively, k
(

1/3 d3 + 3/2 d2 + 13/6 d− 4
)
,

4k(d−1), and k
(

1/3 d3 + 1/2 d2 + 1/6 d− 1
)
, for a total of k

(
2/3 d3 + 2d2 + 19/3 d− 9

)
operations in K.

The remaining operations arise from the repeated Weierstrass preparations. For
i from 1 to d − 1 we apply Weierstrass preparations to produce pi, αi pairs of
respective degree 1, d − i. From Corollary 1 we have that each such Weierstrass
preparation requires (d − i)k2 + (d − i)k operations in K. Summing over i =
1, . . . , d − 1 yields 1/2

(
d2k2 + d2k − dk2 − dk

)
. Finally, combining this with the

previous Taylor shift costs leads to the desired result. �

Theorem 5 (Hensel factorization complexity per factor) Let d̂i be the de-

gree of f̂ i during the HenselFactorization algorithm applied to f ∈ K[[X1]][Y],
deg(f) = d. To update the first factor with degree d1 to precision k requires

d1d̂2k
2+d2k+d1dk+2d1k+2dk+2k operations in K. To update the factor of degree

di, for 1 < i < r to precision k requires did̂i+1k
2 + 2d̂i

2
k+ did̂ik+ 2dik+ 4d̂ik+ 3k

operations in K. To update the final factor of degree dr to precision k requires
d2
rk + 2drk + k operations in K.

Proof. Updating the first factor produced by HenselFactorization requires
one Taylor shift of degree d, one Weierstrass preparation producing p1 and α1 of
degree d1 and d̂2 = d − d1, and one Taylor shift of degree d1 to obtain f1 from
p. From Observation 4 and Corollary 1 we have that the Taylor shifts require
k(d2 + 2d + 1) + k(d2

1 + 2d1 + 1) operations in K and the Weierstrass preparation
requires d1(d − d1)k2 + d1(d − d1)k operations in K. The total cost counted as

operations in K is thus d1d̂2k
2 + d2k + d1dk + 2d1k + 2dk + 2k.

Updating each following factor, besides the last, requires one Taylor shift of
degree d̂i to update f̂ i from αi−1, one Taylor shift of degree d̂i to update gi from

11

f̂ i, one Weierstrass preparation to obtain pi and αi of degree di and d̂i+1 = d̂i− di,
and one Taylor shift of degree di to obtain fi from pi. The Taylor shifts require

2k(d̂i
2

+ 2d̂i + 1) + k(d2
i + 2di + 1) operations in K. The Weierstrass preparation

requires di(d̂i − di)k
2 + di(d̂i − di)k operations in K. The total cost counted as

operations in K is thus did̂i+1k
2 + 2d̂i

2
k + did̂ik + 2dik + 4d̂ik + 3k.

Finally, updating the last factor to precision k requires a single Taylor shift of
degree dr costing d2

rk + 2drk + k operations in K. �

Corollary 2 (Hensel factorization complexity per factor, per iteration) Let

d̂i be the degree of f̂ i during the HenselFactorization algorithm applied to
f ∈ K[[X1]][Y], deg(f) = d. Computing the kth homogeneous part of f1 with degree

d1 requires 2d1d̂2k+d2
1+d2+2d1+2d+2 operations in K. Computing the kth homo-

geneous part of fi of degree di, 1 < i < r, requires 2did̂i+1k+d2
i +2d̂i

2
+4d̂i+2di+3

operations in K. Computing the kth homogeneous part of fr with degree dr requires
d2
r + 2dr + 1 operations in K.

Proof. Follows directly from Observation 4, Corollary 1, and Theorem 5. �

Corollary 3 (Hensel factorization complexity) For f ∈ K[[X1]][Y], where deg(f) =
d and f factorizes as f1 · · · fr, the factors can be computed up to precision k within
O(d3k + d2k2) operations in K.

Proof. Let f1, . . . , fr have respective degrees d1, . . . , dr. Let d̂i =
∑r
j=i dj (thus

d̂1 = d and d̂r = dr). From Theorem 5, each fi, 1 ≤ i < r requires O(did̂i+1k
2 +

d̂i
2
k) operations in K to be updated to precision k (or O(d2

rk) for fr). We have∑r−1
i=1 did̂i+1 ≤

∑r−1
i=1 did < d2 and

∑r
i=1 d̂i

2
≤
∑r
i=1 d

2 = rd2 ≤ d3. Hence, all
factors can be updated to precision k within O(d3k + d2k2) operations in K. �

Corollary 3 shows that the two dominant terms in the cost of computing a
Hensel factorization of a UPoPS of degree d, up to precision k, are d3k and d2k2.
From the proof of Theorem 5, the former term arises from the cost of the Taylor
shifts in Y , meanwhile, the latter term arises from the (polynomial) multiplication
of homogeneous parts in Weierstrass preparation. This observation then leads to
the following conjecture. Recall that M(n) denotes a polynomial multiplication
time [16, Ch. 8]. From [15], relaxed algorithms, which improve the performance of
lazy evaluation schemes, can be used to compute a power series product in K[[X1]]
up to precision k within O(M(k) log k) operations in K.

Conjecture 1 Let f ∈ K[[X1]][Y] factorize as f1 · · · fr using HenselFactoriza-
tion. Let deg(f) = d. Updating the factors f1, . . . , fr to precision k using relaxed
algorithms requires at most O(d3k + d2M(k) log k) operations in K.

Comparatively, the Hensel-Sasaki Construction requires at most O(d3M(d) +
dM(d)k2) operations in K to compute the first k terms of all factors of f ∈ K[X1, Y],
where f has total degree d [1]. The method of Kung and Traub [10], requires
O(d2kM(k)) (using linear lifting) or O(d2M(k)) (using quadratic lifting). Already,

12

Algorithm 4 UpdateToDegParallel(k, f , t)

Input: A positive integer k, f ∈ K[[X1, . . . , Xn]] known to at least precision k − 1. If f has ancestors,
it is the result of a binary operation. A positive integer t for the number of threads to use.

Output: f is updated to precision k, in place.
1: if f(k) already computed then
2: return
3: g, h := FirstAncestor(f), SecondAncestor(f)
4: UpdateToDegParallel(k, g, t);
5: UpdateToDegParallel(k, h, t);
6: if f is a product then
7: V = [0, . . . , 0] . 0-indexed list of size t
8: parallel for j = 0 to t− 1
9: for i = jk/t to (j+1)k/t− 1 while i ≤ k do

10: V[j] := V[j] + g(i)h(k−i)

11: f(k) :=
∑t−1

j=0 V[j] . reduce

12: else if f is a p from a Weierstrass preparation then
13: WeierstrassPhase1Parallel(k,g,f ,h,WeierstrassData(f),t)
14: else if f is an α from a Weierstrass preparation then
15: WeierstrassPhase2Parallel(k, g, h, f , t)
16: else
17: UpdateToDeg(k, f)

Corollary 3—where d = deg(f, Y)—shows that our Hensel factorization is an im-
provement on Hensel-Sasaki (d2k2 versus dM(d)k2) and an improvement on Kung
and Traub’s method with linear lifting. If Conjecture 1 is true, then Hensel factor-
ization can be within a factor of log k of Kung and Traub’s method with quadratic
lifting. Nonetheless, this conjecture is highly encouraging where k � d. Proving
this conjecture is left to future work.

5 Parallel Algorithms

Section 4 presented lazy algorithms for Weierstrass preparation, Taylor shift, and
Hensel factorization. It also presented complexity estimates for those algorithms.
Those estimates will soon be used to help dynamically distribute hardware resources
(threads) in a parallel variation of Hensel factorization; in particular, a Hensel fac-
torization pipeline where each pipeline stage updates one or more factors, see Algo-
rithms 7–9. But first, we will examine parallel processing techniques for Weierstrass
preparation.

5.1 Parallel Algorithms for Weierstrass Preparation

Algorithm 1 shows that p and α from a Weierstrass preparation can be updated in
two phases: p in phase 1, and α in phase 2. Ultimately, these updates rely on the
computation of the homogeneous part of some power series product. Algorithm 4
presents a simple map-reduce pattern (see Section 2.3) for computing such a ho-
mogeneous part. Moreover, this algorithm is designed such that, recursively, all
ancestors of a power series product are also updated using parallelism.

Using the notation of Algorithm 1, recall that, e.g., Fi = ai −
∑i−1
j=0(bjci−j),

for i ≤ m. Using lazy power series arithmetic, this entire formula can be encoded
by a chain of ancestors, and one simply needs to update Fi to trigger a cascade of
updates through its ancestors. In particular, using Algorithm 4, the homogeneous
part of each product bjci−j is recursively computed using map-reduce. Similarly,
Lemma 1 can be implemented using map-reduce (see Algorithm 5) to replace Lines

13

Algorithm 5 LemmaForWeierstrass(k, f , g, h, t)

Input: f, g, h ∈ K[[X1, . . . , Xn]] such that f = gh, f(0) = 0, h(0) 6= 0, f known to precision k, and g, h
known to precision k − 1. t ≥ 1 the number of threads to use.

Output: g(k).
1: V = [0, . . . , 0] . 0-indexed list of size t
2: parallel for j = 0 to t− 1
3: for i = jk/t + 1 to (j+1)k/t while i < k do
4: V[j] := V[j] + g(k−i)h(i)

5: end for

6: return
(
f(k) −

∑t−1
j=0 V[j]

)
/h(0)

Algorithm 6 WeierstrassPhase2Parallel(k, f , p, α, t)

Input: f =
∑d+m

i=0 aiY
i, p = Y d +

∑d−1
i=0 biY

i, α =
∑m

i=0 ciY
i, ai, bi, ci ∈ K[[X1, . . . , Xn]] satisfying

Theorem 1. b0, . . . , bd−1 known moduloMk+1, c0, . . . , cm known moduloMk, forM the maximal
ideal of K[[X1, . . . , Xn]]. t ≥ 1 for the number of threads to use.

Output: c0, . . . , cm known modulo Mk+1, updated in-place.
1: work := 0
2: for i = 1 to m do . estimate work using Observation 3, Corollary 1
3: if i ≤ d then work := work + (i− 1)
4: else work := work + d

5: t′ := 1; targ := work / t
6: work := 0; j := 1
7: I := [−1, 0, . . . , 0] . 0-indexed list of size t+ 1
8: for i = 1 to m do
9: if i ≤ d then work := work + (i− 1)

10: else work := work + d

11: if work ≥ targ then
12: I[j] := i; work := 0; j := j + 1

13: if j ≤ t and t′ < 2 then . work did not distribute evenly; try again with t/2 threads
14: t = t / 2; t′ = 2
15: goto Line 6
16: else if j ≤ t then . still not evenly distributed, use all threads in UpdateToDegParallel
17: I[1] = m; t′ = 2t; t = 1

18: parallel for ` = 1 to t
19: for i = I[`− 1] + 1 to I[`] do
20: UpdateToDegParallel(k, cm−i, t

′)

9–12 of Algorithm 1. Phase 1 of Weierstrass, say WeierstrasPhase1Parallel,
thus reduces to a loop over i from 0 to d − 1, calling Algorithm 4 to update Fi to
precision k, and calling Algorithm 5 to compute bi(k).

Algorithm 4 uses several simple subroutines: FirstAncestor gets the first
ancestor of a power series, SecondAncestor gets the second ancestor of a power
series, and UpdateToDeg calls the update function of a lazy power series to ensure
its precision is at least k; see Section 3.

Now consider phase 2 of WeierstrassUpdate. Notice that computing the
homogeneous part of degree k for cm−i, 0 ≤ i ≤ m only requires each cm−i to
be known up to precision k − 1, since each bj ∈ M for 0 ≤ j < d. This implies
that the phase 2 for loop of WeierstrassUpdate has independent iterations.
We can thus apply the map pattern directly to this loop itself, rather than relying
on the map-reduce pattern to compute the homogeneous part of a product power
series. However, consider the following two facts: the cost of computing each cm−i
is different (Observation 3), and, for a certain number of available threads t, it may
be impossible to partition the iterations of the loop into t partitions of equal work.
Yet, partitioning the loop itself is preferred for greater parallelism.

Hence, for phase 2, a dynamic decision is made to either apply the map pattern to
the loop over cm−i, or to apply the map pattern within UpdateToDegParallel

14

Algorithm 7 HenselPipelineStage(k, fi, t, gen)

Input: An positive integer k, fi = Y di +
∑di−1

i=0 aiY
i, ai ∈ K[[X1, . . . , Xn]]. A positive integer t the

number of threads to use within this stage. gen an generator for the previous pipeline stage.
Output: a sequence of integers j signalling fi is known to precision j. This sequence ends with k.

1: p := Precision(fi) . get the current precision of fi
2: do
3: k′ := gen() . A blocking function call until gen yields
4: for j = p to k′ do
5: UpdateToDegParallel(j, fi, t)
6: yield j

7: p := k′

8: while k′ < k

for each cm−i, or both. This decision process is detailed in Algorithm 6, where t
partitions of equal work try to be found to apply the map pattern to only the loop
itself. If unsuccessful, t/2 partitions of equal work try to be found with 2 threads
given to each partition for UpdateToDegParallel. If that, too, is unsuccessful,
then each cm−i is updated one at a time using UpdateToDegParallel and the
total number of threads t.

5.2 Parallel Algorithms for Hensel Factorization

Let f = f1 · · · fr be a Hensel factorization where the factors have respective degrees
d1, . . . , dr. From Algorithm 3 and Figure 1, we have already seen that the repeated
applications of Taylor shift and Weierstrass preparation naturally form a chain of
ancestors, and thus a pipeline. Using the notation of Algorithm 3, updating f1

requires updating g1, p1, α1. Then, updating f2 requires updating f̂2, g2, p2, α2, and
so on. These groups easily form stages of a pipeline, where updating f1 to degree
k − 1 is a prerequisite for updating f2 to degree k − 1. Moreover, meanwhile f2 is
being updated to degree k− 1, f1 can simultaneously be updated to degree k. Such
a pattern holds for all successive factors.

Algorithms 7 and 8 show how the factors of a Hensel factorization can all be
simultaneously updated to degree k using asynchronous generators, forming the so-
called Hensel pipeline. Algorithm 7 shows a single pipeline stage as an asynchronous
generator, which itself consumes data from another asynchronous generator—just
as expected from the pipeline pattern. Algorithm 8 shows the creation, and joining
in sequence, of those generators. The key feature of these algorithms is that a
generator (say, stage i) produces a sequence of integers (j) which signals to the
consumer (stage i+ 1) that the previous factor has been computed up to precision
j and thus the required data is available to update its own factor to precision j.

Notice that Algorithm 8 still follows our lazy evaluation scheme. Indeed, the
factors are updated all at once up to precision k, starting from their current pre-
cision. However, for optimal performance, the updates should be applied for large
increases in precision, rather than repeatedly increasing precision by one.

Further considering performance, Theorem 5 showed that the expected cost for
updating each factor from a Hensel factorization is different. In particular, for
d̂i =

∑r
j=i dj , updating factor fi scales as did̂i+1k

2. The work for each stage of the
proposed pipeline is unequal and the pipeline is unlikely to achieve good parallel
speedup. However, Corollary 2 shows that the work ratios between stages do not
change for increasing k, and thus a static scheduling scheme is sufficient.

15

Algorithm 8 HenselFactorizationPipeline(k, F , T)

Input: A positive integer k, F = {f1, . . . , fr}, the output of HenselFactorization. T ∈ Zr a 0-indexed
list of the number of threads to use in each stage, T [r − 1] > 0.

Output: f1, . . . , fr updated in-place to precision k.
1: gen := ()→ {yield k} . An anonymous function asynchronous generator
2: for i = 0 to r − 1 do
3: if T [i] > 0 then

. Capture HenselPipelineStage(k, fi+1, T [i], gen) as a
function object, passing the previous gen as input

4: gen := AsyncGenerator(HenselPipelineStage, k, fi+1, T [i], gen)

5: do
6: k′ := gen() . ensure last stage completes before returning
7: while k′ < k

Algorithm 9 DistributeResourcesHensel(F , ttot)

Input: F = {f1, . . . , fr} the output of HenselFactorization. ttot > 1 the total number of threads.
Output: T , a list of size r, where T [i] is the number of threads to use for updating fi+1. The number

of positive entries in T determines the number of pipeline stages. T [i] = 0 encodes that fi+1 should
be computed within the same stage as fi+2.

1: T := [0, . . . , 0, 1]; t := ttot − 1 . T [r − 1] = 1 ensures last factor gets updated
2: d :=

∑r
i=1 deg(fi)

3: W := [0, . . . , 0] . A 0-indexed list of size r
4: for i = 1 to r − 1 do
5: W[i− 1] := deg(fi)(d− deg(fi)) . Estimate work by Theorem 5, did̂i+1

6: d := d− deg(fi)

7: totalWork :=
∑r−1

i=0 W[i]
8: ratio := 0; targ := 1 / t
9: for i = 0 to r do

10: ratio := ratio+ (W[i] / totalWork)
11: if ratio ≥ targ then
12: T [i] := round(ratio · t); ratio := 0

13: t := ttot −
∑r−1

i=0 T [i] . Give any excess threads to the earlier stages
14: for i = 0 to r − 1 while t > 0 do
15: T [i] := T [i] + 1; t := t− 1

16: return T

Notice that Algorithm 7 takes a parameter t for the number of threads to use.
As we have seen in Section 5.1, the update for Weierstrass preparation can also be
done in parallel. Consequently, each stage of the Hensel pipeline is augmented to
further exploit such parallelism. We have thus composed the two pattern schemes,
applying map-reduce within each stage of the parallel pipeline. This composition
serves to load-balance the pipeline. For example, the first stage may be given t1
threads and the second stage given t2 threads, with t1 > t2, so that the two stages
may execute in nearly equal time.

To further encourage load-balancing, each stage of the pipeline need not update
a single factor, but rather a group of successive factors. Algorithm 9 applies The-
orem 5 to attempt to load-balance each stage s of the pipeline through assigning a
certain number of threads ts and a certain group of factors fs1 , . . . , fs2 to it. The

goal is for
∑s2
i=s1

did̂i+1 / ts to be roughly equal for each stage.

6 Experimentation and Discussion

The previous section introduced parallel schemes for Weierstrass preparation and
Hensel factorization based on the composition of the map-reduce and pipeline par-
allel patterns. Our lazy power series, along with those parallel schemes have been
implemented in C/C++ as part of the Basic Polynomial Algebra Subprograms

16

(BPAS) library [2]. These parallel algorithms are implemented using generic sup-
port for task parallelism, thread pools, and asynchronous generators, also provided
in the BPAS library. The details of this parallel support are discussed in [3] and [4].

Our experimentation was collected on a compute node running Ubuntu 18.04.4
with two Intel Xeon X5650 processors, each with 6 cores (12 cores total) at 2.67
GHz, and a 12x4GB DDR3 memory configuration at 1.33 GHz. BPAS was compiled
using GMP 6.1.2 [8]. We work over Q since these examples do not require algebraic
numbers. All data shown is an average of 3 trials.

We begin by evaluating Weierstrass preparation for two families of examples:

(i) ur =
∑r
i=2(X2

1 +X2 + i)Y i + (X2
1 +X2)Y +X2

1 +X1X2 +X2
2

(ii) vr =
∑r
i=dr/2e(X

2
1 +X2 + i)Y i +

∑dr/2e−1
i=1 (X2

1 +X2)Y i +X2
1 +X1X2 +X2

2

Applying Weierstrass preparation to ur results in p with degree 2. Applying Weier-
strass preparation to vr results in p with degree dr/2e. Fig. 2 summarizes the
resulting execution times and parallel speedups. Generally, speedup increases with
increasing degree in Y and increasing precision computed.

Figure 2: Comparing Weierstrass preparation of ur and vr for r ∈ {6, 8, 10, 12} using 1, 6, and
12 threads. First column: execution time of ur and vr; second column: parallel speedup of ur
and vr. Profiling of v6 shows that its exceptional relative performance is attributed to remarkably
good branch prediction.

Within Weierstrass preparation, recall that parallelism arises in our implemen-
tation in two main ways: computing summations of products of homogeneous parts
(the parallel for loops in UpdateToDegParallel and LemmaForWeierstrass),
and the parallel for loop over updating cm−i in WeierstrassPhase2Parallel.
The former has an inherent limitation: computing a multivariate product with one
operand of low degree and one operand of high degree is much easier than com-
puting one where both operands are of moderate degree. Evenly partitioning the
iterations of the loop thus does not result in even work per thread. This is evident in
comparing the parallel speedup between ur and vr; the former, with higher degree
in α, relies less on parallelism coming from those products. Better partitioning is
thus needed and is left to future work.

17

We evaluate our parallel Hensel factorization using three families of problems:

(i) xr =
∏r
i=1(Y − i) +X1(Y 3 + Y)

(ii) yr =
∏r
i=1(Y − i)i +X1(Y 3 + Y)

(iii) zr =
∏r
i=1(Y +X1 +X2 − i) +X1X2(Y 3 + Y)

Denote by f1, . . . , fr the factors of any one of these UPoPS. Let fi be the factor
with i as the root of f̄i.

Figure 3: Comparing parallel Hensel factorization for xr, yr, and zr for r ∈ {4, 6, 8, 10}. First
column: execution time; second column: parallel speedup. For t = 12 resource distribution is
determined by Algorithm 9; for t = 12, opt serial execution time, rather than complexity estimates,
estimates work in Algorithm 9.

Despite the inherent challenges of irregular parallelism arising from stages with
unequal work, the composition of parallel patterns allows for load-balancing be-
tween stages and the overall pipeline to achieve relatively good parallel speed-up.
Fig. 3 summarizes these results while Table 1 presents the execution time per fac-
tor (or stage, in parallel). Generally speaking, potential parallelism increases with
increasing degree and increasing precision.

The distribution of discrete threads to a discrete number of pipeline stages is a
challenge; a perfect distribution requires a fractional number of threads per stage.
Nonetheless, in addition to the distribution technique presented in Algorithm 9,
we can also examine hand-chosen assignments of threads to stages. One can first
determine the time required to update each factor in serial, say for some small k,

18

and then use that execution time as the work estimates in Algorithm 9, rather than
using the complexity estimates. This latter technique is depicted in Fig. 3 as opt and
in Table 1 as Time-est. threads. This technique is still not perfect, again because
of the discrete nature of threads, and the imperfect parallelization of computing
summations of products of homogeneous parts.

factor
serial shift Complexity- parallel wait Time-est. parallel wait
time (s) time (s) Est. threads time (s) time (s) threads time (s) time (s)

x4 k = 600 f1 18.1989 0.0012 6 4.5380 0.0000 7 3.5941 0.0000
f2 6.6681 0.0666 4 4.5566 0.8530 3 3.6105 0.6163
f3 3.4335 0.0274 1 4.5748 1.0855 0 - -
f4 0.0009 0.0009 1 4.5750 4.5707 2 3.6257 1.4170

totals 28.3014 0.0961 12 4.5750 6.5092 12 3.6257 2.0333

y4 k = 100 f1 0.4216 0.0003 3 0.1846 0.0000 4 0.1819 0.0000
f2 0.5122 0.0427 5 0.2759 0.0003 4 0.3080 0.0001
f3 0.4586 0.0315 3 0.2842 0.0183 0 - -
f4 0.0049 0.0048 1 0.2844 0.2780 4 0.3144 0.0154

totals 1.3973 0.0793 12 0.2844 0.2963 12 0.3144 0.0155

z4 k = 100 f1 5.2455 0.0018 6 1.5263 0.0000 7 1.3376 0.0000
f2 2.5414 0.0300 4 1.5865 0.2061 3 1.4854 0.0005
f3 1.2525 0.0151 1 1.6504 0.1893 0 - -
f4 0.0018 0.0018 1 1.6506 1.6473 2 1.5208 0.7155

totals 9.0412 0.0487 12 1.6506 2.0427 12 1.5208 0.7160

Table 1: Times for updating each factor within the Hensel pipeline. Complexity-estimated threads
use complexity estimates to estimate work within Algorithm 9; time-estimated threads use the
serial execution time to estimate work and distribute threads. Wait time indicates time the stage
spent waiting on the previous.

In future, we must consider several important factors to improve performance.
Relaxed algorithms should give better complexity and performance. For parallelism,
better partitioning schemes for the map-reduce pattern within Weierstrass prepara-
tion should be considered. Finally, for the Hensel pipeline, more analysis is needed
to optimize the scheduling and resource distribution, particularly considering coef-
ficient sizes and the multivariate case.

Acknowledgements

The authors would like to thank NSERC of Canada (award CGSD3-535362-2019).

References

[1] Parisa Alvandi, Masoud Ataei, Mahsa Kazemi, and Marc Moreno Maza. On
the extended hensel construction and its application to the computation of real
limit points. J. Symb. Comput., 98:120–162, 2020.

[2] M. Asadi, A. Brandt, C. Chen, S. Covanov, M. Kazemi, F. Mansouri, D. Mo-
hajerani, R. H. C. Moir, M. Moreno Maza, D. Talaashrafi, Linxiao Wang, Ning
Xie, and Yuzhen Xie. Basic Polynomial Algebra Subprograms (BPAS), 2021.
www.bpaslib.org.

[3] Mohammadali Asadi, Alexander Brandt, Robert H. C. Moir, Marc Moreno
Maza, and Yuzhen Xie. On the parallelization of triangular decompositions. In

19

www.bpaslib.org

ISSAC ’20: International Symposium on Symbolic and Algebraic Computation,
pages 22–29. ACM, 2020.

[4] Mohammadali Asadi, Alexander Brandt, Robert H. C. Moir, Marc Moreno
Maza, and Yuzhen Xie. Parallelization of triangular decompositions: Tech-
niques and implementation. J. Symb. Comput., 2021. (to appear).

[5] Alexander Brandt, Mahsa Kazemi, and Marc Moreno Maza. Power series
arithmetic with the BPAS library. In Computer Algebra in Scientific Computing
(CASC) 2020, volume 12291 of LNCS, pages 108–128. Springer, 2020.

[6] David V Chudnovsky and Gregory V Chudnovsky. On expansion of algebraic
functions in power and puiseux series, i. Journal of Complexity, 2(4):271–294,
1986.

[7] G. Fischer. Plane Algebraic Curves. AMS, 2001.

[8] Torbjrn Granlund et al. GNU MP 6.0 Multiple Precision Arithmetic Library.
Samurai Media Limited, 2015.

[9] Azzam Haidar, Jakub Kurzak, and Piotr Luszczek. An improved parallel sin-
gular value algorithm and its implementation for multicore hardware. In In-
ternational Conference for High Performance Computing, Networking, Storage
and Analysis, SC’13, pages 90:1–90:12. ACM, 2013.

[10] H. T. Kung and Joseph F. Traub. All algebraic functions can be computed
fast. J. ACM, 25(2):245–260, 1978.

[11] M. McCool, J. Reinders, and A. Robison. Structured parallel programming:
patterns for efficient computation. Elsevier, 2012.

[12] Panagiotis D. Michailidis and Konstantinos G. Margaritis. Parallel direct meth-
ods for solving the system of linear equations with pipelining on a multicore
using openmp. J. Comput. Appl. Math., 236(3):326–341, 2011.

[13] T. Sasaki and F. Kako. Solving multivariate algebraic equation by Hensel
construction. Japan J. Indust. and Appl. Math., 1999.

[14] Michael L. Scott. Programming Language Pragmatics (3. ed.). Academic Press,
2009.

[15] Joris van der Hoeven. Relax, but don’t be too lazy. J. Symb. Comput.,
34(6):479–542, 2002.

[16] J. von zur Gathen and J. Gerhard. Modern Computer Algebra. Cambridge
University Press, NY, USA, 2 edition, 2003.

20

	Introduction
	Background
	Power Series and Univariate Polynomials over Power Series
	Weierstrass Preparation Theorem andFactorization via Hensel's Lemma
	Parallel Patterns
	Map
	Producer-Consumer and Asynchronous Generators
	Pipeline

	Lazy Power Series
	Algorithms and Complexity
	Weierstrass Preparation
	Hensel Factorization

	Parallel Algorithms
	Parallel Algorithms for Weierstrass Preparation
	Parallel Algorithms for Hensel Factorization

	Experimentation and Discussion

