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ABSTRACT

We discuss the parallelization of algorithms for solving polynomial
systems by way of triangular decomposition. The Triangularize
algorithm proceeds through incremental intersections of polyno-
mials to produce different components (points, curves, surfaces,
etc.) of the solution set. Independent components imply the oppor-
tunity for concurrency. This “component-level” parallelization of
triangular decompositions, our focus here, belongs to the class of
dynamic irregular parallelism. Potential parallel speed-up depends
only on geometrical properties of the solution set (number of com-
ponents, their dimensions and degrees); these algorithms do not
scale with the number of processors. To manage the irregularities of
component-level parallelization we combine different concurrency
patterns, namely, workpile, producer-consumer, and fork/join. We
report on our implementation in the freely available BPAS library.
Experimentation with thousands of polynomial systems yield ex-
amples with up to 9.5X speed-up on a 12-core machine.
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1 INTRODUCTION

Solving a polynomial system by means of triangular decomposition
entails computing a collection of regular chains which together
encode the zero set of the input system. Where triangular decompo-
sition proceeds incrementally, that is, by solving one equation after
the other, a splitting of the quasi-component of a regular chain may
be discovered when intersecting the next polynomial of the input
system and the current partial solution. Concurrency is possible as
the decomposition proceeds independently on each branch.
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Parallelization of high-level procedures for algebraic and geo-
metric computation is not new, receiving much attention in the
’80s and "90s, for example see [2, 8, 9, 12, 22]. In recent years paral-
lelization has again seen attention but in low-level operations like
polynomial arithmetic [5, 13, 19], GCDs [14], and Factorization [20].
Parallelization in these low-level routines is more natural, being
known as regular parallelism [18], since the task decomposes in a
static way into consistently sized units of work. Taking advantage
of the irregular parallelism in high-level geometric computations is
more challenging, where splitting, and thus parallelism, is depen-
dent only on the geometry of the input system, and must be found
dynamically. For example, in the normalization algorithm of [6],
components are first found serially and then processed by a parallel
map over the components. In our proposed technique, we both
discover components and process them in parallel. Indeed, finding
splittings in the geometry is as difficult as solving the system itself.

Parallel triangular decomposition was first addressed in [21].
There, parallelism was facilitated by multi-processor shared mem-
ory and inter-process communication. The overhead associated
with this parallel implementation is drastic and only suited for ex-
tremely large problems. It also relied on solving systems modulo a
prime in order to generate extra splittings and provide opportuni-
ties for parallelism. Solving instead over the rationals provides less
opportunity for parallelism but is of more practical importance.

Despite these challenges, we investigate opportunities for thread-
level parallelism in triangular decomposition algorithms over the
rational numbers. In particular, we discuss three different categories
of concurrency to be exploited: (1) high-level parallelism via inde-
pendent intersection tasks, (2) finer-grained parallelism by means
of asynchronous generators between subroutines, and (3) a divide-
and-conquer scheme for the removal of redundant components.
The parallel schemes are independent but their implementations
are designed to work cooperatively if needed. This is particularly
important to combat the work imbalance and inherent irregular par-
allelism of triangular decomposition algorithms. As we will discuss,
we find that the use of generators in addition to a top-level paral-
lelization scheme is an effective sort of dynamic load-balancing.

Our implementation is extensive, leading to 12 possible configu-
rations of the Triangularize algorithm. This includes solving in the
sense of Kalkbrener or Lazard and Wu, two organizations of the
top-level Triangularize algorithm, and three different levels of par-
allelization. Our algorithms have been implemented in the C/C++
language and extensively evaluated using a collection of over 3000



polynomial systems. The results are encouraging, yielding up to
9.5% parallel speed-up on a 12-core machine.

We begin in Section 2 with a brief review of regular chain theory,
the Triangularize algorithm, and parallel patterns. Section 3 exam-
ines opportunities for parallelism in Triangularize via those parallel
patterns. We report on our implementation in Section 4. Finally, we
conclude in Section 5 with discussion on experimental results, the
effectiveness of our techniques, and areas for future work.

2 PRELIMINARIES

This section is a short review of concepts and algorithms for tri-
angular decomposition and parallel programming. The first two
sections deal with the former, for which details can be found in [10].
Throughout this paper, let k be a perfect field, K be its algebraic
closure, and k[X] be the polynomial ring with X = X; < --- < Xj,.

2.1 Regular chain theory

Let p € k[X]. Assume that p ¢ k holds. Denote by mvar(p), init(p),
mdeg(p), and tail(p), respectively, the greatest variable appearing
in p (called the main variable of p), the leading coefficient of p w.r.t.
mvar(p) (called the initial of p), the degree of p w.r.t. mvar(p) (called
the main degree of p) and the reductum of p w.r.t. mvar(p) (called
the tail of p). For F C k[X], we denote by (F) and V(F) the ideal
generated by F in k[X] and the algebraic set of K" consisting of
the common roots of the polynomials of F, respectively.

Triangular set. Let T C k[X] be a triangular set, that is, a set of
non-constant polynomials with pairwise distinct main variables.
Denote by mvar(T) the set of main variables of the polynomials
in T. A variable v € X is called algebraic w.rt. T if v € mvar(T),
otherwise it is said free w.r.t. T. For v € mvar(T), we denote by T,
and T,, (resp. T;}) the polynomial f € T with mvar(f) = v and the
polynomials f € T with mvar(f) < v (resp. mvar(f) > v). Let ht
be the product of the initials of the polynomials of T. We denote by
sat(T) the saturated ideal of T: if T = @ holds, then sat(T) is defined
as the trivial ideal (0), otherwise it is the ideal (T) : h?. The quasi-
component W(T) of T is defined as V(T) \ V(hT). For f € k[X], we
define Z(f,T) := V(f) N W(T). The Zariski closure of W(T) in K",
denoted by W(T), is the intersection of all algebraic sets V € K"
such that W(T) C V holds; moreover we have W = V(sat(T)).

Regular chain. A triangular set T C k[X] is a regular chain if
either T is empty, or letting v be the largest variable occurring in T,
the set T, is a regular chain, and the initial of T, is regular (that is,
neither zero nor zero divisor) modulo sat(T,, ). The dimension of T,
denoted by dim(T), is by definition the dimension of its saturated
ideal and, as a property, equals n — |T|, where |T| is the number of
elements of T. The saturated ideal sat(T) of the regular chain T en-
joys important properties, in particular the following, proved in [7].
Let uy, ..., ug be all the free variables of T. Then sat(T) is unmixed
of dimension d. Moreover, we have sat(T) N k[uy,...,ug] = (0).
Another property is the fact that a polynomial p belongs to sat(T)
if and only if p reduces to 0 by pseudo-division w.r.t T, see [3].

Regular GCD. Let i be an integer with 1 <i < n, T C k[X] be a
regular chain, p,t € k[X] \ k be polynomials with the same main
variable X;, and g € k or g € k[X] with mvar(g) < X;. Assume that

(1) X; > X; holds for all X; € mvar(T), and
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(2) both init(p) and init(¢) are regular w.r.t. sat(T).
Denote by A the total ring of fractions of the residue class ring
k[X1,...,Xi-1]/+/sat(T). Note that A is isomorphic to a direct prod-
uct of fields. We say that g is a regular GCD of p, t w.r.t. T whenever:
(G1) the leading coefficient of g in X; is a regular element of A;
(G2) g belongs to the ideal generated by p and ¢ in A[X;]; and
(Gs) ifdeg(g, X;) > 0, then g pseudo-divides both p and ¢ in A[X;],
that is, both prem(p, g) and prem(t, g) belong to +/sat(T).
When Conditions (G1), (Gz), (G3) and deg(g, X;) > 0 hold, we have:
(Gs) if mdeg(g) = mdeg(t), then /sat(T U t) = sat(T U g) and
W(TUt) € Z(hg, TUt) U W(TUg) € W(T Ut)both hold,
(Gs) if mdeg(g) < mdeg(t), let ¢ = pquo(t,g), then T U q is a
regular chain and the following two relations hold:
(@) Vsat(TUt) = Vsat(T U g) N +fsat(T U q),
(b) W(TUt) C Z(hg, TUt) U W(TUg)UW(TUq) € W(T U t),
(Ge) W(TUg) < V(p),
(G7) Vip)nW(TUt) € W(TUg) U V(p,hg) NW(TUIL) C
V(p) N W(T Ut).

Triangular decomposition. Let F C k[X]. Regular chains T, . . ., Te
of k[X] form a triangular decomposition of V(F) in the sense of Kalk-
brener (resp. Wu and Lazard) whenever we have V(F) = U;?ZIW
(resp. V(F) = U{_, W(T})). Hence, a triangular decomposition of
V(F) in the sense of Wu and Lazard is necessarily a triangular de-
composition of V(F) in the sense of Kalkbrener, while the converse
is not true. One important issue in the implementation of algorithms
decomposing polynomial ideals and algebraic sets is the removal of
redundant components. In the context of triangular decompositions,
this issue implies being able to decide whether W(T;) € W(T;) holds
or not, for any two regular chains T;, T; € k[X].

2.2 Specification of the main algorithms

Triangularize. Let F C k[X]. The function call Triangularize(F)
computes regular chains Ti, ..., Te € k[X] forming a triangular
decomposition of V(F) in the sense of either Kalkbrener, or Wu and
Lazard. An algorithm for Triangularize(F) is presented in [10].
Regularize. Forp € k[X]and T C k[X]aregular chain, Regularize(p, T)
computes regular chains T, ..., T, C k[X] such that:
(Ry) fori=1,...,e,ceitherp € sat(T;) or p is regular w.r.t. sat(T;),
(R2) we have W(T) C W(Ty) U --- U W(Te) € W(T).
RegularGed. Let i, T, p, t, g be as above in the definition of a regular
GCD. The function call RegularGed(p, t, X;, T) computes a set of
pairs {(91, T1), - - -, (ge, Te)} such that:
(1) fori=1,...,e,ifdim(T;) = dim(T) holds, then g; is a regular
GCD of p,t w.rt. Tj,
(2) we have W(T) € W(Ty) U --- U W(Te) € W(T).
Intersect. Let p € k[X] and let T C k[X] be a regular chain. The
function call Intersect(p, T) computes regular chains Ty, ..., T, C
K[X] such that: V(p) "\W(T) € W(T;)U- - -UW(T,) C V(p)NW(T).

2.3 Parallel Programming Patterns

The algorithms shown in the previous subsection already hint at
their parallel opportunities where each either take a list as an argu-
ment or return a list. These opportunities are explained in detail
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in Section 3, while here we review some parallel programming
patterns which will be employed by those opportunities.

The first key observation is that the Triangularize algorithm itself
only presents parallelism when the solution set can be separated
into multiple components. The existence of such components is
not an algorithmic property but rather one subject to the system
being solved. Even if computations do split, the work is likely to be
unbalanced. This describes irregular parallelism. In contrast, regu-
lar parallelism exists where problems algorithmically decompose
into sub-problems of roughly equal size. Despite these challenges,
parallel patterns can be employed for irregular parallelism [18].

We are concerned with thread parallelism, and thus with minimiz-
ing parallel overheads, as well as effectively managing inter-thread
dependencies and communication. The former deals with the cost
of spawning threads, and over-subscription—where software threads
outnumber hardware resources to drastically reduce performance.
The latter can be addressed through parallel design patterns [18].

Parallel Map and Workpile. The map pattern maps a function
to each item in a collection, simultaneously executing the function
on each independent data, scaling well with increasing data and
threads. But, threads must operate in lockstep, and are thus limited
by the slowest in the group, working best with regular parallelism.

The workpile pattern generalizes map to handle both irregu-
lar amounts of work and an unknown number of tasks for load-
balancing. Tasks are collected into a pile (or queue) and one thread
executes one task from the pile in parallel, repeating until the pile is
empty. This pattern allows in-flight tasks to add additional tasks to
the pile, allowing new tasks to be launched immediately by an idle
thread. Threads are thus uncoupled, making load balancing possible.
Tasks in the pile may also be ordered so that tasks can create new
tasks earlier in the computation to exploit further parallelism.

Asynchronous Generators, Producer-Consumer, and Pipeline.
A generator function is one yielding data items one a time rather
than many as a collection. Concurrency arises if items are generated
asynchronously while the caller processes a generated item; hence
an asynchronous generator. This yields the classic producer-consumer
problem (see [4, Ch. 6]). Using a collection of producer-consumer
pairs in a sequence (or directed acyclic graph), where interior nodes
are both producers and consumers, is one way of describing the
pipeline pattern. Pipeline’s greatest asset is its ability to begin pro-
cessing before all input data items are ready (cf. the map pattern).
If the producer-consumer pairs are implemented using generators,
one can construct a tree—rather than a strict pipeline— which dy-
namically grows and shrinks as functions are called and return. A
tree arises where a producer consumes multiple generators.

Divide-and-Conquer and Fork-Join. Divide-and-Conquer (DnC)
is a ubiquitous algorithmic technique based on recursion. A problem
is divided into sub-problems, each solved (conquered) recursively,
and then sub-solutions are combined to provide a solution to the
original problem. Where there are multiple recursive calls per level,
the fork-join pattern can be employed where each recursive branch
is executed in parallel (forked) and then joined together before re-
turning. In a parallel DnC it is important to avoid too many parallel
recursive calls to reduce parallel overheads and over-subscription.

3 CONCURRENCY OPPORTUNITIES

In this section, we highlight the opportunities for concurrent execu-
tion offered by the algorithms for computing triangular decomposi-
tions presented in [10]. To do so, we review the key ideas underlying
those algorithms and show how concurrency can be exposed.

3.1 Parallel Map and the Triangularize procedure

Algorithm 1 states a simple procedure implementing the Triangu-
larize procedure. Lines 1 to 5 in Algorithm 1 compute a triangular
decomposition of V(F) in the sense of Wu and Lazard; this follows
easily from the specification of the Intersect algorithm given in
Section 2. Line 5 ensures the decomposition is free of redundant
components; we shall discuss this step in detail in Section 3.3.
One can organize the regular chains computed in the loop of
Algorithm 1 as a tree with an edge going from node T to node T if
T’ is returned by Intersect(p, T) for some p € F, (e.g., see Figure 2
in Section 5). Let (T, T”) be such an edge: observe that we have
|T| < |T’|. Algorithm 1 traverses this tree in a breadth-first search
manner. Using this algorithm, a Kalkbrener decomposition can be
computed by simply pruning branches of the tree, for which the
height of a regular chain, i.e., the number of polynomials in the
chain, exceeds the number of input polynomials in F. This is a
consequence of Krull’s height theorem, see [10], for details.

Algorithm 1 Triangularize(F)

Input: a finite set F C k[X]
Output: regular chains T, . .
U W(TL)

1 7 :={0}

2: for p € F do
3: T := Ures Intersect(p, T)
4
5

., Te € k[X] such that V(F) = W(Ty) U

T =9
: Remove from 7 any T; where there exists T, € 7 such that W(Ty) C
W(T;) and Ty # T both hold.
6: return 7~

It follows from Algorithm 1 that whenever Intersect(p, T) returns
more than one regular chain, there is an opportunity for concur-
rent execution. Indeed, the branches of the breadth-first search
are independent and can be continued concurrently. Referring to
the celebrated parallel map pattern [18, Ch. 4], one can see Line
3 as a map-step where Intersect maps each current regular chain.
Moreover, this can be seen as coarse-grained parallelism as each In-
tersect call represents substantial work. We now turn our attention
to parallel opportunities in the core subroutines of Triangularize.

3.2 Asynchronous generators with Intersect,
RegularGced and Regularize

Let p € k[X] and T C Kk[X] be a regular chain. The operation
Intersect(p, T) is quite complicated in general. Yet, for the purpose
of discussing opportunities concurrency, it is sufficient to consider
the most common scenario. Let us assume p ¢ k, v = mvar(p),
init(p) is regular w.r.t sat(T) (calling Regularize can assure this),
and that T} is empty (by proceeding by induction on the number
of variables). Algorithm 2 implements Intersect(p, T) under these
conditions. It follows from the applications of Formulas (Gg) and
(G7) from Section 2 together with induction on dim(T,).
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Algorithm 2 Intersect(p, T)

Algorithm 3 Regularize(p, T)

Input: p € k[X], p ¢ k, v := mvar(p), aregular chain T C k[X] such that
init(p) regular w.r.t. sat(T) and T, = 0.

Output: regular chains Ty, ..., Te € k[X] such that V(p) N W(T) C
W(T)U---UW(T,) C V(p) n W(T).

1: if v ¢ mvar(T) then

2 yield TU {p}

3 for S in Intersect(init(p), T) do

4: for U in Intersect(tail(p), S) do

5: ‘ yield U

6: else

7 for (g, T;) € RegularGed(p, Ty, v, T,,) do
8 if dim(T;) # dim(T,) then

9: for T; ; € Intersect(p, T;) do

10: ‘ yield Ti,j

11: else

12: if g; ¢ k and mvar(g;) = v then

13: ‘ yield T; U {gi}

14: for T; ; € Intersect(lc(g;, v), T;) do
15: for T; j . € Intersect(p, T;, ;) do
16: ‘ yield Ti,j, k

Note that Algorithm 2 is a generator function, also called an
iterator, a special type of co-routine, see Chapter 8 in [23]. In our
pseudo-code, the keyword yield outputs a value to the generator’s
caller and then resumes execution. In contrast, return is used to
return a value and terminate the function. Each yield in Intersect
is an opportunity for concurrency where the caller may execute in
parallel with the one yielded regular chain, meanwhile Intersect
continues. Hence, Intersect may be implemented as a so-called
asynchronous generator, a concept described in Section 2.3.

Observe now that the function call RegularGed(p, Ty, v, T,)),
when it returns more than one pair, provides additional opportuni-
ties for concurrency. Let us actually see how this latter function call
is performed in [10]. The subresultant chain S of p and T, regarded
as univariate in v, is computed. Let A = min(mdeg(p), mdeg(T))
and let i be in the range 0, ..., A + 1. Denote by S; the subresultant
(from S) of index i and by s; the principal subresultant coefficient of
S;i. Recall that we have S;,; = p, S; = Ty, and that Sy is simply the
resultant of p and T, in v; moreover, we have Sy = s¢. Let j be an
integer, with 1 < j < A+ 1, such that s; is a regular modulo sat(T,)
and such that for any 0 < i < j, we have s; € sat(T;). Then S is
a regular GCD of p and T, w.r.t. T, . By calling Regularize on s,
k =0,...,jitis always possible to find such an S;, up to splittings
of the regular chain. This again suggests that RegularGCD could
be implemented as an asynchronous generator for Intersect.

We now consider Regularize, focusing on the most common
scenario as with Intersect. Algorithm 3 presents this case, stating the
assumptions which follow from Formulas (G4) and (Gs) in Section 2,
together with a reasoning by induction on dim(T7)). Just as in the
previous two algorithms, Regularize may both be implemented as
an asynchronous generator and use generators as it calls Intersect.

The above discussion of Intersect, RegularGed and Regularize
shows that each of those routines can be implemented as a gen-
erator function. Each top-level call to Intersect thus creates a tree
of generator function calls, most of which being both producers

Input: p € k[X], p ¢ k, v := mvar(p), aregular chain T C k[X] such that
init(p) regular w.r.t. sat(T;) and T} = 0.
Output: regular chains Ty, . . ., Te C k[X] such that (Ry), (Rz) hold.

1: if v ¢ mvar(T) then return T

2: for (g;, T;) € RegularGed(p, Ty, v, T, ) do

3 if dim(T;) < dim(T;) then

4: for T; ; € Regularize(p, T;) do

5: ‘ yield T; ;

6: | else

7: if g; € k or mvar(g;) < v or mdeg(g;) = mdeg(T,) then
8: | yield T;

9: else

10: yield T; U {g; }

1L qi := pquo(To, gi, v)

12: yield T; U {q; }

13: for T; ; € Intersect(lc(g;, v), T;) do
14: for T; j i € Regularize(p, T;, ;) do
15: ‘ yield Ti,j, k

and consumers of values. This hints towards using the producer-
consumer and pipeline patterns, as discussed in Section 2.3.

These concurrency opportunities represent more fine-grained
parallelism as the amount of work diminishes with each recursive
call. Further, it is worth noting that the work between splittings is
likely unbalanced. For instance, the polynomials g; and g;, returned
with the regular chain T; at Lines 10 and 12 of Algorithm 3, may
have very different degrees. These irregular parallelism challenges
are addressed through cooperation between the generators and the
coarse-grained parallelism in Triangularize (see Section 4.3).

3.3 Fork-join approach for removing
redundant components

To remove redundant components efficiently we must address two
issues: how to efficiently test single inclusions, e.g. W(T;) € W(T})
and how to efficiently remove redundant components from a large
set. The first issue is addressed by taking advantage of the heuristic
algorithm IsNotIncluded (see [24, pp. 166—169]) which is very ef-
fective in practice. Handling large sets of regular chains is possible
by structuring the computation as a divide-and-conquer algorithm.

Given a set 7 = {Ty,...,Te} of regular chains, Algorithm 4,
RemoveRedundantComponents(7"), removes redundant chains by
dividing 7~ into two subsets, producing two irredundant sets by
means of recursion. Then, the two sets are merged by checking for
pair-wise inclusions between the two sets. The divide-and-conquer
nature of RemoveRedundantComponents is undoubtedly admissi-
ble to ubiquitous fork-join parallelism, Particularly, one forks the
computation to compute one of the recursive calls in parallel, and
then joins upon return. These are indicated by the keywords spawn
and sync, respectively. The merge-step is also embarrassingly par-
allel and can use the map pattern for each of the inner loops.

4 IMPLEMENTATION

Our implementation of regular chains and the Triangularize algo-
rithm follows that of [10], hence, here we look only at the imple-
mentation of parallel aspects. Our implementation is written in
the C and C++ languages. For the simple fork-join parallelism in
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Algorithm 4 RemoveRedundantComponents(7")

Algorithm 5 TriangularizeByTasks(F)

Input: afinite set 7 = {7, . . ., Te } of regular chains
Output: a set of regular chains forming an irredudant decomposition of
the same algebraic set as 7~
if e = 1 then return {T; }
C:=Te/2l;T<e = {T1, - - -, Te}; Tog = {Tp415 - - -» Te }
71 := spawn RemoveRedundantComponents(7<¢)
7, := RemoveRedundantComponents(7=.¢)
sync
for T7 in 77 do
if VT, in 7; IsNotincluded (T, T;) then
| 7 =0T
for T, in 7; do
if VT in 7;’ IsNotIncluded (T, T;) then
| 77 =7 U{Tz}
return 7/ U 7,

the removal of redundant components, we simply use Cilk [15],
built-in to the GCC compiler, mirroring Algorithm 4 and requires
no additional explanation. In all other cases we implement our own
parallel constructs using the Thread Support Library of C++11. Our
implementation is freely available in source as part of the Basic Poly-
nomial Algebra Subprograms (BPAS) library [1] at www.bpaslib.org.
We begin by describing two reorganizations of the Triangularize
algorithm and then describe the underlying parallelization.

The first reorganization of Triangularize is “by level”. It is simple
restructuring of Algorithm 1 to move the removal of redundant
components inside the loop, thus removing redundancies after each
incremental step (“level”). We apply the map pattern to the inner
for loop, thus spawning |77| — 1 additional threads to execute the
|77| independent calls to Intersect. As previously described for the
map pattern, if the intersections at a particular level are unbalanced
then the program must wait for the slowest, reducing parallelism.

The second reorganization of Triangularize is “by tasks” (Al-
gorithm 5), and makes use of the workpile pattern to combat the
issues incurred by applying the map pattern to irregular parallelism.
Here, we essentially invert the loops of Triangularize to first iterate
over the current collection of regular chains and then iterate over
polynomials in the input system. Since the former is actually of a
variable and unknown size, this is achieved by creating tasks, one
per regular chain, with a list of polynomials associated to each task.
Splittings create new tasks to be added to the work pile. Once a task
has finished intersecting its list of polynomials, it is complete and
added to a list of results. In this scheme, the potential parallelism
is greater than TriangularizeByLevel but the potential amount of
work is also greater since redundancies are no longer removed at
each step. We discuss these differences later in Section 5.

4.1 Executor Thread Pool

A fundamental structure of most parallel systems is a thread pool.
Thread pools maintain a collection of long-running threads which
wait to be given a task, execute that task, and then return to the
pool. This avoids the overhead of repeatedly spawning threads and
limits the number of threads to avoid over-subscription. When tasks
outnumber threads the pool also maintains a queue of tasks.
Often threads in a pool execute a predetermined task. However,
the many different subroutines in the Triangularize algorithm all

Input: a finite set F C k[X]
Output: regular chains Ty, . .
s U W(Te)

1: Tasks:= { (F,0) }; 7 :={}

2: while |Tasks| > 0 do

3: (P, T) := pop a task from Tasks

4 Choose a polynomial p € P; P" := P\ {p}

5 for T’ in Intersect(p, T) do

6: if |[P’|=0then 7 := T U{T"}

7.

8

., Te C k[X] such that V(F) = W(Ty) U

else Tasks := TasksU {(P’, T')}

return RemoveRedundantComponents(7)

need attention. We thus make use of functors (e.g. std: : function),
objects which encapsulate a function as a first-class object, to model
generic tasks. Our ExecutorThreadPool then maintains a queue of
functor tasks and a pool of ExecutorThreads, threads capable of
executing any functor. For genericity, our implementation requires
void functors, hence returning values by reference. Moreover, val-
ues can be returned one at a time if the functor is a generator.

4.2 Asynchronous Generators & Object Streams

Following the object-oriented nature of C++, and much like functor
objects, we look to encapsulate generators as objects, providing a
generic interface for generators producing many different kinds of
objects. We have created a generic AsyncGenerator class, where
objects are created very simply by passing it a functor whose un-
derlying function creates a collection of objects. The caller then
requests data from the generator object itself instead of the functor.

Serially, a generator object could be implemented by collecting
the objects returned by the functor in a queue and yielding them one
at a time to the caller. To achieve parallelism the AsyncGenerator
facilitates the producer-consumer pattern; the caller is the con-
sumer, the functor is the producer, and the AsyncGenerator itself
works as the intermediary and common interface between the two.
The interface of AsyncGenerator can be seen in Listing 1.

In practice, the subroutines like Intersect, RegularGCD and Reg-
ularize, are mutually recursive and simultaneously act as both pro-
ducers and consumers, using multiple AsyncGenerator objects.

1template <class Object>
»class AsyncGenerator {
1+ /% CONSUMER: create generator to encapsulate a function call. x/
5 template<class Function, class... Args>
6 AsyncGenerator (Function&& f, Args&&... args);
s /* PRODUCER: Add a new Object to be retrieved later. */
virtual void generateObject(Object& obj) = 0;
1
11 /* PRODUCER: Finalize the AsyncGenerator by declaring it has
12 finished generating all possible objects. */
13 virtual void setComplete() = 90;
14
15 /* CONSUMER: Obtain the next generated Object by reference.
16 returns false iff no more objects available and setComplete() =*/
17 virtual bool getNextObject(Object& obj) = 0;
183};

Listing 1: The AsyncGenerator interface which implements
an asynchronous producer-consumer pattern.

The AsyncGenerator fulfills producer-consumer by first insert-
ing itself as a parameter to the functor, so that the producer has


www.bpaslib.org

ahandle on the generator object, and then invokes the functor as fol-
lows. The generator requests a thread from the ExecutorThreadPool
and, where one is available, asynchronously executes the functor on
that thread. Otherwise, the generator acts serially, as just explained,
maintaining a queue of objects returned by the functor.

The final detail to the AsyncGenerator is a mechanism to sleep
the consumer when no object is available to consume. The solution
is provided generically as the AsyncObjectStream class which
provides a thread-safe queue interface and an internal mechanism
to sleep the consumer until an object is ready to be consumed (i.e.
a condition variable or semaphore, see [4, Ch. 6]). Ultimately, the
object stream is completely encapsulated by the AsyncGenerator
and may or may not be used depending on if the generator is truly
executing asynchronously.

4.3 A “Cooperative” Task Scheduler

A task scheduler is one possible implementation of the workpile
pattern. We look to facilitate the scheduling of an unknown number
tasks where the tasks themselves can produce more tasks. This is
exactly the case as in TriangularizeByTasks. Our TaskScheduler,
much like the ExecutorThreadPool, encapsulates tasks as a queue
of functors, where each functor has a reference to the scheduler in
order to schedule more tasks.

The scheduler internally makes use of an ExecutorThreadPool
to launch new tasks immediately (if the pool is not empty) and
otherwise add it to the queue of tasks. To reap the most benefits of
workpile, active threads should add tasks to the scheduler as early
as possible to expose more parallelism. For tasks which produce
exactly one task, instead of adding the new task to the scheduler,
the producing task should execute the new task directly in order to
avoid synchronization overhead.

Consider also that we want to simultaneously use generators and
a task scheduler. However, they both use an ExecutorThreadPool,
which may lead to too many active threads and thus resource con-
tention. One solution would be to limit the sum of the number of
threads in both pools to be the number of hardware threads. How-
ever, this static solution is not receptive to dynamic load-balancing.
In particular, if the number of scheduler tasks is low then more
threads should be made available to generators, or vice-versa. This
leads to a “cooperative” task scheduler and generators.

The cooperation begins by sharing a single thread pool between
the TaskScheduler and all AsyncGenerators. However, this alone
is not enough. The tasks to be scheduled (i.e. the calls to Intersect
from Triangularize) represent a larger amount of work than any
subroutine generator. Hence, to support more coarse-grained paral-
lelism and less parallel overhead, the scheduler should dynamically
be given more resources, as needed. Simply stated, the thread pool
creates a new “high priority” thread if the thread pool is empty
when a new task becomes available. Although the number of active
threads may now exceed hardware resources, this is only temporary
until a generator finishes. As threads are returned to the thread
pool, they may be terminated to account for new high priority
threads, keeping the total number of threads within hardware lim-
its. To avoid a runaway task scheduler, the pool limits the number
of priority threads that can be created. Naturally, this pattern also
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works in reverse, when there are few tasks, as more threads will be
available in the pool to support more asynchronous generators.

5 EXPERIMENTATION AND DISCUSSION

The preceding two sections have explored various opportunities
for parallelism within triangular decomposition algorithms and
their implementations. In particular, we have described coarse-
grained parallelism where Triangularize calls Intersect in parallel,
and the more fine-grained parallelism brought by generators. We
now look to evaluate the effectiveness of the different configurations
of Triangularize. A configuration is parameterized by (1) the type of
decomposition being computed (Lazard-Wu or Kalkbrener), (2) the
organization of the top-level algorithm (TriangularizeByLevel or
TriangularizeByTasks), and (3) the level of parallelization employed
(serial, coarse-grained, or coarse- and fine-grained together).

We test the 12 possible configurations of our implementation
by considering a suite of over 3000 real-world polynomial systems
coming from the scientific literature as well as user-data and bug
reports provided by MapleSoft and the RegularChains [16] library.
In particular, we look at non-trivial systems taking at least 100ms
to solve, in order to warrant the overhead of parallelism. This
yields 828 systems. Our results herein are a median of 3 trials
and were collected on a node running Ubuntu 14.04.5 with two
Intel Xeon X5650 processors each with 6 cores (12 physical threads
with hyperthreading) at 2.67 GHz, and a 12x4GB DDR3 memory
configuration at 1.33 GHz.

On our test suite, speed-ups of up to 9.5X were found. Further,
824 of the 828 systems saw at least some parallel gains from at
least one of the parallel configurations, with 133 having at least
2.0x speed-up. Considering that 203 of those systems contain only
a single component, and thus have no potential for parallelism,
implies that our implementation limits parallel overheads well.
Table 1 presents some examples from the literature with timings
and speed-up factors for all 12 configurations. We also compare
timings there against the RegularChains package of Maple 2019.

Figure 1 summarizes the data collected for Kalkbrener decompo-
sition as a two-dimensional histogram (the trends are the same for
Lazard-Wu decomposition). For each subplot, the x-axis is serial
execution time while the y-axis is parallel speed-up factor. It may
appear that the task-based method incurs some slow-downs, but,
this is mainly for cases running in less than 1s. There, some parallel
overhead is expected, particularly as 203 systems have no potential
parallelism. Nonetheless, if we consider more substantial examples—
those requiring at least 1s to solve—then only 9 examples in the
Kalkbrener-Tasks-Fine configuration have a speed-up less than 0.9,
with the minimum being 0.84. From the trends in the data, we make
two observations: (i) TriangularizeByTasks has the potential for
higher parallelism than TriangularizeByLevel, and (ii) Triangularize-
ByLevel is, in general, slowed down by the use of generators while
the performance TriangularizeByTasks has improved performance.

From our discussions in the preceding sections, (i) should be
very apparent. Our task scheduler, built using the workpile parallel
pattern is more receptive to the irregular parallelism present in
triangular decomposition. Specifically, it allows new tasks to be
taken up immediately by the scheduler’s threads. This contrasts
with the level-wise scheme where threads must operate in lockstep
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Figure 1: Histograms illustrating the distribution of serial runtime against speed-up factor for Kalkbrener decompositions.

for each map step. Note (ii) also follows from our discussion of
over-subscription and resource contention. The task scheduler was
implemented to specifically cooperate with the generators, their
interplay acting as a sort of dynamic load balancing depending on
the number of components discovered during the decomposition.
On the other hand, the rather naive implementation of the map
pattern used by TriangularizeByLevel created resource contention
with the generator threads and worsened parallel performance
compared to using map alone. While TriangularizeByLevel was the
weaker performer in terms of parallel speed-up, there still exists
examples where intermediate removal of redundant components is
an important optimization step (e.g. W41 in Table 1, where Triangu-
larizeByLevel is twice as fast). One should not forgo intermediately
removing redundant components just for the parallel benefits of
workpile. Indeed, combining redundant component removal along-
side the task scheduler is an important area for future work.
Lastly, we consider two specific examples, Systems 2691 and 3295,
illustrated as trees in Figure 2. These plots show the evolution of
the decomposition as Intersect is called in parallel on independent
components in the Kalkbrener-Tasks-Fine configuration. Two typical
patterns are shown. For 2691, each call to Intersect creates two
components. The dynamic and irregular nature of the parallelism
is highlighted where each branch is discovered at different times,
with each having different workloads. For 3295, the first component
splits into several relatively equal branches, except for one branch
with considerably more work. Despite the overall high number
of components, computations in all branches overlap only briefly
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32 1-0-1
B —@ 0—-1
/ 1—0—=a
6 —4 3 2 1 0
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
Time (s)
Sys3295 Component Tree

0 0 €

76 —5—4 3
/6 —5—4 3

D0 —© €
/6 &) —§¢ 3

776—5—4 3
/6 —5—4 3

76—5—4 B

5—-6—@—@
% 6—5—4— 3
9 8 7 6 5 4 3
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Time (s)

Figure 2: The component tree of two systems, showing that
components and independent branches of computation are
found dynamically during the decomposition. Each node de-
picts a component, and the node’s label is the component’s
dimension (-1 being the empty set). Edges are drawn where a
call to Intersect on the parent component returned the child.

since the split in the bottom branch is not found until later, further
highlighting the irregularity in parallelism.

Using these trees and the terminology of fork-join parallelism,
we may consider a crude upper-limit on potential speed-up as the
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Kalkbrener Decomposition Lazard-Wu Decomposition
System Name Level Tasks Level Tasks

Y STme | C [CF [[STme [ C [CF ] MY |m5tme [ ¢ ToF [[STme [ ¢ [CoF | Maple??
8-3-config-Li 8.188 | 3.81 3.14 8.275 | 2.80 | 2.84 5.836 36.299 | 2.93 2.89 38.825 | 3.07 | 3.06 26.660
dessin-2 46.974 1.12 1.08 37.090 1.11 1.11 126.008 50.185 1.19 1.14 36.557 | 1.11 1.07 125.276
dgp6 80.134 | 5.66 5.47 69.147 | 6.31 6.06 54.368 78.067 | 4.02 3.98 67.460 | 6.12 | 5.72 49.496
Ducos-7-5 49.001 1.04 1.02 49.542 | 0.99 1.00 1520.692 48.136 1.00 | 0.97 50.151 1.03 1.01 1537.293
Gerdt 3.939 | 3.01 2.88 3.259 | 3.91 4.57 0.932 3.755 | 2.65 2.62 3.172 | 4.03 | 4.28 0.952
Gonnet 1.406 | 242 | 243 1.683 | 2.57 | 2.46 1.924 1.399 | 2.26 | 2.09 1.680 | 2.25 | 2.77 1.984
Hereman-2 1.178 | 2.56 | 2.24 1.117 | 2.24 | 2.43 0.472 1.248 | 2.52 2.30 1.145 | 2.57 | 2.32 0.592
Issac97 3502.410 | 1.40 1.40 311.231 1.34 1.32 445.312 3571.450 1.40 1.42 318.640 | 1.37 1.34 450.880
Leykin-1 7.194 | 2.48 | 2.20 6.376 1.77 | 2.13 3.316 10.043 | 2.29 | 2.10 9.053 1.96 1.85 5.424
1hlp3 0.254 | 1.39 1.24 0.247 1.09 1.21 0.016 0.193 | 0.98 | 0.94 0.192 | 0.95 | 0.92 0.016
MacLane 1.137 | 2.04 1.74 1.170 1.92 1.71 1.748 3.816 1.50 1.42 4.042 1.49 1.41 4.828
MontesS16 2.233 | 233 | 2.11 2.650 | 2.30 | 2.32 2.400 2.177 | 2.11 2.09 2.592 | 2.40 | 2.30 2.488
Pappus 1.839 | 2.13 1.59 1.940 | 2.34 1.77 2.704 6.255 | 2.95 2.30 10.671 3.53 | 2.87 16.312
Pavelle 1.178 | 1.62 1.44 1.165 1.28 1.43 0.259 33.179 1.02 1.21 39.707 1.15 1.39 5.352
Reif 20.547 | 4.33 | 3.91 20.382 | 5.34 | 4.58 10.899 18.465 | 3.77 | 3.60 18.703 | 5.00 | 4.23 10.691
SEIT 0.593 | 1.89 1.49 0.635 1.69 1.54 0.448 4275 | 3.14 | 2.48 4.606 | 3.07 | 2.64 4.368
W1 10.137 | 3.08 2.93 10.525 | 2.79 | 3.26 2.304 9.806 | 2.81 2.73 10.160 | 2.88 | 3.08 2.500
W41 12.960 | 3.94 | 3.80 25.266 | 4.82 5.16 18.644 12.645 | 3.65 3.57 24.757 | 4.86 | 4.72 15.892
W44 5.294 | 3.44 | 3.23 4.251 | 4.92 5.64 1.132 5.226 | 3.10 | 3.01 4.175 | 4.92 5.11 1.184
W5 20.247 | 598 | 6.20 22.435 | 6.38 | 6.15 14.260 20.248 | 590 | 6.16 21.951 6.19 | 6.07 13.180
YangBaxterRosso 0.675 | 2.42 | 2.17 0.674 | 4.03 | 4.18 0.348 0.638 | 2.18 1.98 0.663 | 4.32 | 4.13 0.371

Table 1: A comparison of timings for the 12 configurations of Triangularize. Here, serial timings are given along with speed-up
factors for coarse (C) and coarse and fine (C+F). Timings for solving using RegularChains in Maple 2019 are also included.

ratio of work (i.e. sum of edges) to span (i.e. the overall decompo-
sition time). This gives 2.13 and 4.97 for Systems 2691 and 3295,
respectively, and an “efficiency” (the ratio of actual to potential
speed-up) as 87.8% and 74.4%, respectively. This suggests that our
implementation indeed exploits the irregular parallelism available,
and is able to exploit more parallelism when more is available.

Despite the inherent challenges of irregular parallelism in trian-
gular decomposition, our implementation effectively utilizes that
which is available through task parallelism and asynchronous gen-
erators. The use of generators in computer algebra is something
which we hope to see applied elsewhere to improve upon irregu-
lar parallelism. For example, generators could also be applied to
polynomial factorization, where factors could be produced and
consumed along a pipeline consisting of square free factorization,
distinct degree factorization, and equal degree factorization.

For the future of triangular decompositions, we hope to include
methods which support more regular parallelism, for example, eval-
uation/interpolation schemes for the computation of subresultant
chains [17] needed by RegularGCD. We also look to perform some
of the solving over a prime field, where computations are more
likely to split, and then lift the solutions [11].
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