
Power Series Arithmetic with the BPAS Library

Alexander Brandt1 Mahsa Kazemi2 Marc Moreno Maza3

Department of Computer Science, The University of Western Ontario,
London, Canada

1 abrandt5@uwo.ca, 2 mkazemin@uwo.ca, 3 moreno@csd.uwo.ca

Abstract

We discuss the design and implementation of multivariate power series,
univariate polynomials over power series, and their associated arithmetic op-
erations within the Basic Polynomial Algebra Subprograms (BPAS) Library.
This implementation employs lazy variations of Weierstrass preparation and
the factorization of univariate polynomials over power series following Hensel’s
lemma. Our implementation is lazy in that power series terms are only com-
puted when explicitly requested. The precision of a power series is dynami-
cally extended upon request, without requiring any re-computation of existing
terms. This design extends into an “ancestry” of power series whereby power
series created from the result of arithmetic or Weierstrass preparation auto-
matically hold on to enough information to dynamically update themselves to
higher precision using information from their “parents”.

Keywords: lazy power series · Weierstrass preparation · Hensel’s lemma

1 Introduction

Power series are polynomial-like objects with, potentially, an infinite number of
terms. They play a fundamental role in theoretical computer science, functional
analysis, computer algebra, and algebraic geometry. Of course, the fact that power
series may have an infinite number of terms presents interesting challenges to com-
puter scientists. How to represent them on a computer? How to perform arithmetic
operations effectively and efficiently with them?

One standard approach is to implement power series as truncated power series,
that is, by setting up in advance a sufficiently large accuracy, or precision, and
discarding any power series term with a degree equal or higher to that accuracy.
Unfortunately, for some important applications, not only is such accuracy problem-
specific, but sometimes cannot be determined before calculations start, or later may
be found to not go far enough. This scenario occurs, for instance, with modular
methods [13] for polynomial system solving [7] based on Hensel lifting and its vari-
ants [22]. It is necessary then to implement power series with data structures and
techniques that allow for reactivity and dynamic updates.

Since a power series has potentially infinitely many terms, it is natural to rep-
resent it as a function, that we shall call a generator, which computes the terms of

1

that power series for a given accuracy. This point of view leads to natural algo-
rithms for performing arithmetic operations (addition, multiplication, division) on
power series based on lazy evaluation.

Another advantage of this functional approach is the fact that it supports con-
currency in a natural manner. Consider a procedure which takes some number of
power series as input and returns a number of power series. Assume the genera-
tors of the outputs can be determined in essentially constant time, which is often
the case. Subsequent computations involving those output power series can then
start almost immediately. In other words, the first procedure call is essentially non-
blocking, and the output power series can (i) be used immediately as input to other
procedure calls, and (ii) have their terms computed only as needed. This approach
allows for power series terms to be computed or “produced” while concurrently be-
ing “consumed” in subsequent computations. These procedure calls can be seen as
the stages of a pipelined computation [14, Ch. 9].

In this work, we present our implementation of multivariate power series (Sec-
tion 3) and univariate polynomials over multivariate power series “UPoPS” (Sec-
tion 4) based on the ideas of lazy evaluation. Factoring such polynomials, by means
of Hensel’s lemma and its extensions and variants, like the extended Hensel construc-
tion (EHC) [17, 1] and the Jung-Abhyankar Theorem [16], is our driving application.
We discuss a lazy implementation of factoring via Hensel’s lemma (Section 6) by
means of lazy Weierstrass preparation (Section 5).

Our implementation is part of the Basic Polynomial Algebra Subprograms (BPAS)
library [3], a free and open-source computer algebra library for polynomial algebra.
The library’s core, of which our power series and UPoPS are a part, is carefully
implemented in C for performance. The library also has a C++ interface for better
usability. Such an interface for power series is forthcoming. Our current imple-
mentation is both sequential and over the field of rational numbers. However, the
BPAS library has the necessary infrastructure, in particular asynchronous genera-
tors, see [4], to take advantage of the concurrency opportunities (essentially pipelin-
ing) created by our design based on lazy evaluation.

Existing implementations of multivariate power series are also available in Maple’s
PowerSeries1 library [12, 2] and SageMath [19]. The former is similarly based
on lazy evaluation, while the latter uses the truncated power series approach men-
tioned above. Our experimental results show that our implementation in BPAS
outperforms its counterparts by several orders of magnitude.

Lazy evaluation in computer algebra has some history, see the work of Karczmar-
czuk [11] (discussing different mathematical objects with an infinite length) and the
work of Monagan and Vrbik [15] (discussing sparse polynomial arithmetic). Lazy
univariate power series, in particular, have been implemented by Burge and Watt [6]
and by van der Hoeven [20]. However, up to our knowledge, our implementation is
the first for multivariate power series in a compiled code.

1This library is accessible, yet undocumented, in Maple 2020 as RegularChains:-PowerSeries.
See www.regularchains.org/documentation.html

2

www.regularchains.org/documentation.html

2 Background

This section gathers basic concepts about multivariate formal power series. We
suggest the book of G. Fischer [9] for an introduction to the subject. We start
with formal power series arithmetic. Let K be an algebraic number field and K
its algebraic closure. We denote by K[[X1, . . . , Xn]] the ring of formal power series
with coefficients in K and with variables X1, . . . , Xn.

Let f =
∑

e∈Nn aeX
e be a formal power series and d ∈ N. The homogeneous

part and polynomial part of f in degree d are denoted by f(d) and f (d), and defined

by f(d) =
∑
|e|=d aeX

e and f (d) =
∑

k≤d f(k). Note that e = (e1, . . . , en) is a

multi-index, Xe stands for Xe1
1 · · ·Xen

n , |e| = e1 + · · ·+ en, and ae ∈ K holds.
Let f, g ∈ K[[X1, . . . , Xn]]. Then the sum, difference, and product of f and g

are given by f ±g =
∑

d∈N (f(d)±g(d)) and fg =
∑

d∈N
(
Σk+`=d (f(k)g(`))

)
. The

order of a formal power series f ∈ K[[X1, . . . , Xn]], denoted by ord(f), is defined as
min{d | f(d) 6= 0}, if f 6= 0, and as∞ otherwise. We recall several properties. First,
K[[X1, . . . , Xn]] is an integral domain. Second, the set M = {f ∈ K[[X1, . . . , Xn]] |
ord(f) ≥ 1} is the only maximal ideal of K[[X1, . . . , Xn]]. Third, for all k ∈ N, we
have Mk = {f ∈ K[[X1, . . . , Xn]] | ord(f) ≥ k}.

Krull topology. Let (fn)n∈N be a sequence of elements of K[[X1, . . . , Xn]] and
f ∈ K[[X1, . . . , Xn]]. We say that (fn)n∈N converges to f if for all k ∈ N there
exists N ∈ N s.t. for all n ∈ N we have n ≥ N ⇒ f − fn ∈ Mk. We say
that (fn)n∈N is a Cauchy sequence if for all k ∈ N there exists N ∈ N s.t. for all
n,m ∈ N we have n,m ≥ N ⇒ fm − fn ∈ Mk. The following results hold: we
have

⋂
k∈NMk = 〈0〉. Moreover, if every Cauchy sequence in K converges, then

every Cauchy sequence of K[[X1, . . . , Xn]] converges too.
Inverse of a power series. Let f ∈ K[[X1, . . . , Xn]]. Then, the following prop-

erties are equivalent: (i) f is a unit, (ii) ord(f) = 0, (iii) f 6∈ M. Moreover, if f is a
unit, then the sequence (un)n∈N, where un = 1+g+g2 + · · ·+gn and g = 1− f/f(0),
converges to the inverse of f/f(0).

Assume n ≥ 1. Denote by A the ring K[[X1, . . . , Xn−1]] and by M be the
maximal ideal of A. Note that n = 1 implies M = 〈0〉.

Lemma 1 Let f, g, h ∈ A such that f = gh holds. Assume n ≥ 2. We write
f =

∑∞
i=0 fi, g =

∑∞
i=0 gi and h =

∑∞
i=0 hi, where fi, gi, hi ∈ Mi \Mi+1 holds

for all i > 0, with f0, g0, h0 ∈ K. We note that these decompositions are uniquely
defined. Let r ∈ N. We assume that f0 = 0 and h0 6= 0 both hold. Then the term
gr is uniquely determined by f1, . . . , fr, h0, . . . , hr−1.

Lemma 1 is essential to our implementation of Weierstrass Preparation Theorem
(WPT). Hence, we give a proof by induction on r. Since g0h0 = f0 = 0 and h0 6= 0
both hold, the claim is true for r = 0. Now, let r > 0 and we can assume that
g0, . . . , gr−1 are uniquely determined by f1, . . . , fr−1, h0, . . . , hr−2. Observe that to
determine gr, it suffices to expand f = gh modulo Mr+1:

f1 + f2 + · · ·+ fr = g1h0 + (g2h0 + g1h1) + · · ·+ (grh0 + gr−1h1 + · · ·+ g1hr−1) .

gr is then found by polynomial multiplication and addition and a division by h0.
Now, let f ∈ A[[Xn]], written as f =

∑∞
i=0 aiX

i
n with ai ∈ A for all i ∈ N . We

assume f 6≡ 0 mod M[[Xn]]. Let d ≥ 0 be the smallest integer such that ad 6∈ M.

3

Then, WPT states the following.

Theorem 1 There exists a unique pair (α, p) satisfying the following:

(i) α is an invertible power series of A[[Xn]],

(ii) p ∈ A[Xn] is a monic polynomial of degree d,

(iii) writing p = Xd
n + bd−1X

d−1
n + · · ·+ b1Xn + b0, we have: bd−1, . . . , b1, b0 ∈M,

(iv) f = αp holds.

Moreover, if f is a polynomial of A[Xn] of degree d + m, for some m, then α is a
polynomial of A[Xn] of degree m.

Proof. If n = 1, then writing f = αXd
n with α =

∑∞
i=0 ai+dX

i
n proves

the existence of the claimed decomposition. Now assume n ≥ 2. Let us write
α =

∑∞
i=0 ciX

i
n with ci ∈ A for all i ∈ N. Since we require α to be a unit, we have

c0 6∈ M. We must then solve for bd−1, . . . , b1, b0, c0, c1, . . . , cd, . . . such that for all
m ≥ 0 we have:

a0 = b0c0
a1 = b0c1 + b1c0
a2 = b0c2 + b1c1 + b2c0

...
ad−1 = b0cd−1 + b1cd−2 + · · ·+ · · ·+ bd−2c1 + bd−1c0
ad = b0cd + b1cd−1 + · · ·+ · · ·+ bd−1c1 + c0

ad+1 = b0cd+1 + b1cd + · · ·+ · · ·+ bd−1c2 + c1
...

ad+m = b0cd+m + b1cd+m−1 + · · ·+ · · ·+ bd−1cm+1 + cm
...

We will compute each of bd−1, . . . , b1, b0, c0, c1, . . . , cd, . . . modulo each of the succes-
sive powers ofM, that is,M,M2, . . . ,Mr, We start moduloM. By definition
of d, the left hand sides of the first d equations above are all 0 mod M. Since
c0 is a unit, each of b0, b1, . . . , bd−1 is 0 mod M. Plugging this into the remaining
equations we obtain ci ≡ ad+i mod M, for all i ≥ 0. Therefore, we have solved for
each of bd−1, . . . , b1, b0, c0, c1, . . . , cd, . . . moduloM. Let r > 0 be an integer. We as-
sume that we have inductively determined each of bd−1, . . . , b1, b0, c0, c1, . . . , cd, . . .
modulo each of M, . . . ,Mr. We wish to determine them modulo Mr+1. Consider
the first equation, namely a0 = b0c0, with a0, b0, c0 ∈ A. It follows from the hy-
pothesis and Lemma 1 that we can compute b0 moduloMr+1. Consider the second
equation, that we re-write a1 − b0c1 = b1c0. A similar reasoning applies and we
can compute b1 modulo Mr+1. Continuing in this manner, we can compute each
of b2, . . . , bd−1 modulo Mr+1. Finally, using the remaining equations, determine ci
mod Mr+1, for all i ≥ 0. �

This theorem allows for three remarks. First, the assumption of the theorem,
namely f 6≡ 0 mod M[[Xn]], can always be met, for any f 6= 0, by a suitable linear
change of coordinates. Second, WPT can be used to prove that K[[X1, . . . , Xn]] is
both a unique factorization domain (UFD) and a Noetherian ring. Third, in the

4

context of the theory of analytic functions, WPT implies that any analytic function
(namely f in our context) resembles a polynomial (namely p in our context) in the
vicinity of the origin.

Now, let f = akY
k + · · · + a1Y + a0 with ak, . . . , a0 ∈ K[[X1, . . . , Xn]]. We

define f = f(0, . . . , 0, Y) ∈ K[Y]. We assume that f is monic in Y (ak = 1).
We further assume K is algebraically closed. Thus, there exist positive integers
k1, . . . , kr and pairwise distinct elements c1, . . . , cr ∈ K such that we have f =
(Y − c1)k1(Y − c2)k2 · · · (Y − cr)kr .

Theorem 2 (Hensel’s Lemma) There exists f1, . . . , fr ∈ K[[X1, . . . , Xn]][Y], all
monic in Y , such that we have:

1. f = f1 · · · fr,

2. deg(fj , Y) = kj, for all j = 1, . . . , r,

3. fj = (Y − cj)kj , for all j = 1, . . . , r.

Proof. The proof is by induction on r. Assume first r = 1. Observe that k = k1
necessarily holds. Now define f1 := f . Clearly f1 has all the required properties.
Assume next r > 1. We apply a change of coordinates sending cr to 0. That is:
g(X1, . . . , Xn, Y) := f(X1, . . . , Xn, Y + cr) = (Y + cr)k + a1(Y + cr)k−1 + · · ·+ ak.
WPT applies to g. Hence there exist α, p ∈ K[[X1, . . . , Xn]][Y] such that α is a
unit, p is a monic polynomial of degree kr, with p = Y kr , and we have g = αp.
Then, we set fr(Y) = p(Y − cr) and f∗ = α(Y − cr). Thus fr is monic in Y and
we have f = f∗fr. Moreover, we have f∗ = (Y − c1)k1(Y − c2)k2 · · · (Y − cr−1)kr−1 .
The induction hypothesis applied to f∗ implies the existence of f1, . . . , fr−1. �

3 The Design and Implementation of Lazy Power
Series

Our power series implementation is both lazy and high-performing. To achieve this,
our design and implementation has two goals:

(i) compute only terms of the series which are truly needed; and
(ii) have the ability to “resume” a computation, in order to obtain a higher pre-

cision power series without restarting from the beginning.
Of course, the lazy nature of our implementation refers directly to (i), while the
high-performance nature is due in part to (ii) and in part to other particular im-
plementation details to be discussed.

Facilitating both of these aspects requires the use of some sort of generator
function—a function which returns new terms for a power series to increase its
precision. Such a generator, is the key to high-performance in our implementation,
yet also the most difficult part of the design.

Our goal is to define a structure encoding power series so that they may be
dynamically updated on request. Each power series could then be represented as a
polynomial alongside some generator function. A key element of this design is to
“hide” the updating of the underlying polynomial. In our C implementation this is
done through a functional interface comprising of two main functions: (i) getting
the homogeneous part of a power series, and (ii) getting the polynomial part of

5

1 geometric_series_ps := proc(vars::list)
2 local homog_parts := proc(vars::list)
3 return d -> sum(vars[i], i=1..nops(vars))^d;
4 end proc;
5 ps := table();
6 ps[DEG] := 0;
7 ps[GEN] := homog_parts(vars); #capture vars in closure , return a function
8 ps[POLY] := ps[GEN](0);
9 return ps;

10 end proc;

Listing 1: The geometric series as a lazy power series.

a power series, each for a requested degree. These functions call some underlying
generator to produce terms until the requested degree is satisfied.

As a first example, consider, the construction of the geometric series as a lazy
power series, in Maple-style pseudo-code, in Listing 1. A power series is a data
structure holding a polynomial, a generator function, and an integer to indicate up
to which degree the power series is currently known. In this simple example, we see
the need to treat functions as first-class objects. The manipulation of such functions
is easy in functional or scripting languages, where dynamic typing and first-class
function objects support such manipulation. This manipulation becomes further
interesting where the generator of a power series must invoke other generators, as
in the case of arithmetic (see Section 3.2).

In support of high-performance we choose to implement our power series in the
strongly-typed and compiled C programming language rather than a scripting lan-
guage. On one hand, this allows direct access to our underlying high-performance
polynomial implementation [5], but on the other hand creates an impressive design
challenge to effectively handle the need for dynamic function manipulation. In this
section we detail our resulting solution, which makes use of a so-called ancestry
in order for the generator function of a newly created power series to “remember”
from where it came. We begin by discussing the power series data structure, and
our solution to generator functions in C. Then, Section 3.2 examines power se-
ries multiplication and division using this structure, and evaluates our arithmetic
performance against SageMath and Maple.

3.1 The Power Series Data Structure, Generators, and An-
cestors

The organization of our power series data structure is focused on supporting incre-
mental generation of new terms through continual updates. To support this, the
first fundamental design element is the storage of terms of the power series. The
current polynomial part, i.e. the terms computed so far, of a power series are stored
in a graded representation. A dense array of (pointers to) polynomials is maintained
whereby the index of a polynomial in this array is equal to its (total) degree. Thus,
this is an array of homogeneous polynomials representing the homogeneous parts of
the power series, called the homogeneous part array. The power series data struc-
ture is a simple C struct holding this array, as well as integer numbers indicating
the degree up to which homogeneous parts are currently known, and the allocation
size of the homogeneous part array.

6

Using our graded representation, the generator function is simply a function
returning the homogeneous part of a power series for a requested degree. Unfor-
tunately, in the C language, functions are not readily handled as objects. Hence,
we look to essentially create a closure for the generator function (see, e.g., [18, Ch.
3]), by storing a function pointer along with the values necessary for the function.
For simplicity of implementation, these captured values are passed to the function
as arguments. We first describe this function pointer.

In an attempt to keep the generators as simple as possible, we enforce some
symmetry between all generators and thus the stored function pointers. Namely:
(i) the first parameter of each generator must be an integer, indicating the degree of
the homogeneous polynomial to be generated; and (ii) they must return that homo-
geneous polynomial. For some generator functions, e.g. the geometric series, this
single integer argument is enough to obtain a particular homogeneous part. How-
ever, this is insufficient for most cases, particularly for generating a homogeneous
part of a power series which resulted from an arithmetic operation.

Therefore, to introduce some flexibility in the generators, we extend the previ-
ous definition of a generator function to include a finite number of void pointer
parameters following the first integer parameter. The use of void pointer param-
eters is a result of the fact that function pointers must be declared to point to a
function with a particular number and type of parameters. Since we want to store
this function pointer in the power series struct, we would otherwise need to cap-
ture all possible function declarations, which is a very rigid solution. Instead, void
pointer parameters simultaneously allow for flexibility in the types of the generator
parameters, as well as limit the number of function pointer types which must be
captured by the power series struct. Flexibility arises where these void pointers
can be cast to any other pointer type, or even cast to any machine-word-sized plain
data type (e.g. long or double). In our implementation these so-called void gen-
erators are simple wrappers, casting each void pointer to the correct data type for
the particular generator, and then calling the true generator. Section 3.2 provides
an example in Listing 4.

Our implementation, which supports power series arithmetic, Weierstrass prepa-
ration, and factorization via Hensel’s lemma, currently requires only 4 unique types
of function pointers for these generators. All of these function pointers return a
polynomial and take an integer as the first parameter. They differ in taking 0–
3 void pointer parameters as the remaining parameters. We call the number of
these void pointer parameter the generator’s order. We then create a union type
for these 4 possible function pointers and store only the union in the power series
struct. The generator’s order is also stored as an integer to be able to choose the
correct generator from the union type at runtime.

Finally, these void pointers are also stored in the struct to eventually be passed
to the generator. When the generator’s order is less than maximum, these extra
void pointers are simply set to NULL. The structure of these generators, the genera-
tor union type, and the power series struct itself is shown in Listing 2. In our imple-
mentation, these generators are used generically, via the aforementioned functional
interface. In the code listings which follow, these functions are named homogPart PS

and polynomialPart PS, to compute the homogeneous part and polynomial part
of a power series, respectively.

In general, these void pointer generator parameters are actually pointers to

7

1 typedef Poly_ptr (* homog_part_gen)(int);
2 typedef Poly_ptr (* homog_part_gen_unary)(int , void*);
3 typedef Poly_ptr (* homog_part_gen_binary)(int , void*, void*);
4 typedef Poly_ptr (* homog_part_gen_tertiary)(int , void*, void*, void*);
5

6 typedef union HomogPartGenerator {
7 homog_part_gen nullaryGen;
8 homog_part_gen_unary unaryGen;
9 homog_part_gen_binary binaryGen;

10 homog_part_gen_tertiary tertiaryGen;
11 } HomogPartGenerator_u;
12

13 typedef struct PowerSeries {
14 int deg;
15 int alloc;
16 Poly_ptr* homog_polys;
17 HomogPartGenerator_u gen;
18 int genOrder;
19 void *genParam1, *genParam2, *genParam3;
20 } PowerSeries_t;

Listing 2: A first implementation of the power series struct in C and function pointer declarations
for the possible generator functions. Poly ptr is a pointer to a polynomial.

existing power series structs. For example, the operands of an arithmetic operation
would become arguments to the generator of the result. This relation then yields a
so-called ancestry of power series. In this indirect way, a power series “remembers”
from where it came, in order to update itself upon request via its generator. This
may trigger a cascade of updates where updating a power series requires updating
its “parent” power series, and so on up the ancestry tree. Section 3.2 explores this
detail in the context of power series arithmetic, meanwhile it is also discussed as
a crucial part of a lazy implementation of Weierstrass preparation (Section 5) and
factorization via Hensel’s lemma (Section 6).

The implementation of this ancestry requires yet one more additional feature.
Since our implementation is in the C language, we must manually manage memory.
In particular, references to parent power series (via the void pointers) must remain
valid despite actions from the user. Indeed, the underlying updating mechanism
should be transparent to the end-user. Thus, it should be perfectly valid for an
end-user to obtain, for example, a power series product, and then free the memory
associated with the operands of the multiplication.

In support of this we have established a reference counting scheme. Whenever
a power series is made the parent of another power series its reference count is
incremented. Therefore, the user may “free” or “destroy” a power series when it
is no longer needed, but the memory persists as long as some other power series
has reference to it. Destruction is then only a decrement of a reference counter.
However, once the counter falls to 0, the data is actually freed, and moreover,
a child power series will decrement the reference count of its parents. In a final
complication, we must consider the case when a void pointer parameter is not
pointing to a power series. We resolve this by storing, in the power series struct,
a value to identify the actual type of a void parameter. A simple if condition can
then check this type and conditionally free the generator parameter, if it is not plain
data. For example, a power series or a UPoPS, see Listing 3.

8

1 typedef enum GenParamType {
2 PLAIN_DATA = 0,
3 POWER_SERIES = 1,
4 UPOPS = 2,
5 MPQ_LIST = 3
6 } GenParamType_e;
7

8 void destroyPowerSeries_PS(PowerSeries_t* ps) {
9 --(ps->refCount);

10 if (ps->refCount <= 0) {
11 for (int i = 0; i <= ps->deg; ++i) {
12 freePolynomial(homog_polys[i]);
13 }
14 if (ps->genParam1 != NULL && ps->paramType1 == POWER_SERIES) {
15 destroyPowerSeries_PS ((PowerSeries_t *) ps->genParam1);
16 }
17 // repeat for other parameters.
18 }
19 }

Listing 3: Extending the power series struct to include reference counting and proper management
of reference counts to parent power series via destroyPowerSeries PS.

3.2 Implementing Power Series Arithmetic

With the power series structure fully defined, we are now able to see examples
putting its generators to use. Given the design established in the previous section,
implementing a power series operation is as simple as defining the unique generator
associated with that operation. In this section we present power series multiplication
and division using this design. Let us begin with the former.

As we have seen in Section 2, the power series product of f, g ∈ K[[X1, . . . , Xn]] is
defined simply as h = fg =

∑
d∈N

(
Σk+`=d (f(k)g(`))

)
. In our graded representation,

continually computing new terms of h requires simply computing homogeneous
parts of increasing degree. Indeed, for a particular degree d we have (fg)(d) =∑

k+`=d f(k)g(`). Through our use of an ancestry and generators, the power series h
can be constructed lazily, by simply defining its generator and generator parameters,
and instantly returning the resulting struct. The generator in this case is exactly a
function to compute (fg)(d) from f and g.

In reality, the generator stored in the struct encoding h is the void gener-
ator homogPartVoid prod PS which, after casting parameters, simply calls the
true generator, homogeneousPart prod PS. This is shown in Listing 4. There,
multiplyPowerSeries PS is the actual power series operator, returning a lazily
constructed power series product. There, the parents f and g are reserved (refer-
ence count incremented) and assigned to be generator parameters, and the generator
function pointer set. Finally, a single term of the product is computed.

Now consider finding the quotient h =
∑

e ceX
e which satisfies f = gh for

a given power series f =
∑

e aeX
e and an invertible power series g =

∑
e beX

e.
One could proceed by equating coefficients in f = gh, with b0 being the constant
term of g, to obtain ce = 1/b0

(
ae −

∑
k+`=e bkc`

)
. This formula can easily be

rearranged in order to find the homogeneous part of h for a given degree d: h(d) =

1/g(0)
(
f(d) −

∑d
k=1 g(k)h(d−k)

)
. This formula is possible since to compute h(d) we

need only h(i) for i = 1, . . . , d−1. Moreover, the base case is simply h(0) = f(0)/g(0),
a valid division in K since g(0) 6= 0. The rest follows by induction.

9

1 Poly_ptr homogPart_prod_PS(int d, PowerSeries_t* f, PowerSeries_t* g) {
2 Poly_ptr sum = zeroPolynomial ();
3 for (int i = 0; i <= d; i++) {
4 Poly_ptr prod = multiplyPolynomials(
5 homogPart_PS(d-i, f), homogPart_PS(i, g));
6 sum = addPolynomials(sum , prod);
7 }
8 return sum;
9 }

10

11 Poly_ptr homogPartVoid_prod_PS(int d, void* param1, void* param2) {
12 return homogPart_prod_PS(d, (PowerSeries_t *) param1,
13 (PowerSeries_t *) param2);
14 }
15

16 PowerSeries_t* multiplyPowerSeries_PS(PowerSeries_t* f, PowerSeries_t* g) {
17 if (isZeroPowerSeries_PS(f) || isZeroPowerSeries_PS(g)) {
18 return zeroPowerSeries_PS ();
19 }
20 reserve_PS(f); reserve_PS(g);
21 PowerSeries_t* prod = allocPowerSeries(1);
22 prod->gen.binaryGen= &(homogPartVoid_prod_PS)
23 prod->genParam1 = (void*) f;
24 prod->genParam2 = (void*) g;
25 prod->paramType1 = POWER_SERIES;
26 prod->paramType2 = POWER_SERIES;
27 prod->deg = 0;
28 prod->homogPolys[0] = homogPart_prod_PS(0, f, g);
29 return prod;
30 }

Listing 4: Computing the multiplication of two power series, where homogPart prod PS is the
generator of the product.

In our graded representation, this formula yields a generator for a power series
quotient. The realization of this generator in code is simple, as shown in Listing 5.
Not shown is the void generator wrapper and a top-level function to return the lazy
quotient, which is simply symmetric to the previous multiplication example.

The only trick to this generator for the quotient is that it requires a reference to
the quotient itself. This creates an issue of a circular reference in the power series
ancestry. To avoid this, we abuse our parameter typing and label the quotient’s
reference to itself as plain data.

We now look to compare our implementation against SageMath [19], and
Maple 2020. In Maple, the PowerSeries library [12, 2] provides lazy multivariate
power series, meanwhile the built-in mtaylor command provides truncated multi-
variate taylor series. Similarly, SageMath includes only truncated power series.
In these latter two, an explicit precision must be used and truncations cannot be
extended once computed. Consequently, our experimentation only measures com-
puting a particular precision, thus not using our implementation’s ability to resume
computation. We compare against all three; see Figures 1–3.

In SageMath, the multivariate power series ring R[[X1, . . . , Xn]] is imple-
mented using the univariate power series ring S[[T]] with S = R[X1, . . . , Xn]. In
S[[T]], the subring formed by all power series f such that the coefficient of T i

in f is a homogeneous polynomial of degree i (for all i ≥ 0) is isomorphic to
R[[X1, . . . , Xn]]. By default, Singular [8] underlies the multivariate polynomial ring
S while Flint [10] underlies the univariate polynomials used in univariate power se-
ries. Python 3.7 interfaces and joins these underlying implementations. To see ex-

10

1 Poly_ptr homogPart_quo_PS(int d, PowerSeries_t* f, PowerSeries_t* g,
PowerSeries_t* h) {

2 if (d == 0) {
3 return dividePolynomials(homogPart_PS(0, f), homogPart_PS(0, g));
4 }
5 Poly_ptr s = homogPart_PS(d, f);
6 for (int i = 1; i <= deg; ++i) {
7 Poly_ptr p = multiplyPolynomials(homogPart_PS(i, g),
8 homogPart_PS(d-i, h));
9 s = subPolynomials(s, p);

10 }
11 return divideByRational(s, homogPart(0, g))
12 }

Listing 5: Computing the division of two power series, where homogPart quo PS is the genrator of
the quotient.

actly how SageMath works consider f ∈ K[[X1, X2]] with the goal is to compute 1
f

and f · 1f to precision d. One begins by constructing the power series ring in X1, X2

over Q with the default precision set to d as R.<x,y> = PowerSeriesRing(QQ,

default prec=d). Then g = f^-1 returns the inverse, and h = f * g the desired
product, to precision d.

Throughout this paper our benchmarks were collected with a time limit of 1800
seconds on a machine running Ubuntu 18.04.4 with an Intel Xeon X5650 processor
running at 2.67 GHz, with 12x4GB DDR3 memory at 1.33 GHz.

The first set of benchmarks are presented in Figure 1 where the power series
f = 1 + X1 + X2 is both inverted and multiplied by its inverse. Figures 2 and 3
present the same but for f = 1+X1+X2+X3 and f = 2+ 1

3 (X1+X2), respectively.
In all cases, f · 1

f includes the time to compute the inverse. It is clear that our
implementation is orders of magnitude faster than existing implementations. This is
due in part to the efficiency of our underlying polynomial arithmetic implementation
[5], but also to our execution environment. Our implementation is written in the
C language and fully compiled, meanwhile, both SageMath and Maple have a
level of interpreted code, which surely impacts performance. We note that, through
truncated power series as polynomials, the dense multiplication of a power series
by its inverse is trivial for SageMath and mtaylor.

11

Figure 1: Computing 1
f

and f · 1
f

for f = 1 +X1 +X2

Figure 2: Computing 1
f

and f · 1
f

for f = 1 +X1 +X2 +X3.

Figure 3: Computing 1
f

and f · 1
f

for f = 2 + 1
3

(X1 +X2)

12

4 Univariate Polynomials over Lazy Power Series

A univariate polynomial with multivariate power series coefficients, i.e. a univariate
polynomial over power series (UPoPS), is implemented as a simple extension of
our existing power series. Following a simple dense univariate polynomial design,
our UPoPS are represented as an array of coefficients, each being a pointer to a
power series, where the index of the coefficient in the array implies the degree of
the coefficient’s associated monomial. Integers are also stored for the degree of
the polynomial and the allocation size of the coefficient array. In support of the
underlying lazy power series, we also add reference counting to UPoPS.

The arithmetic of UPoPS is inherited directly from its coefficient ring (our lazy
power series) and follows a naive implementation of univariate polynomials (see,
e.g. [21, Ch. 2]). Through the use of our lazy power series, our implementation of
UPoPS is automatically lazy through each individual coefficient’s ancestry. Lazy
UPoPS addition, subtraction, and multiplication follow easily.

One important operation on UPoPS which is not inherited directly from our
power series implementation is Taylor shift. This operation takes a UPoPS f ∈
K[[X1, . . . , Xn]][Y] and returns f(Y +c) for some c ∈ K. Normally, the shift operator
would be defined for any element of the ground ring K[[X1, . . . , Xn]], however our
use of Taylor shift in applying Hensel’s lemma (see Section 6), requires only shifting
by elements of K, and we thus specialize to that case. Since the coefficients of f are
lazy power series, our goal is to compute f(Y + c) lazily as well. Since our UPoPS
are represented in a dense fashion, we compute the coefficients of f(Y + c) as a
polynomial in Y . Let S = (si,j) be the lower triangular matrix such that si,j is the
coefficient of Y j in the binomial expansion (Y +c)i, for i = 0, . . . , k, and j = 0, . . . , i,
where k = deg(f). Let A = (ai) be the vector of the coefficients of f and B = (bi)
that of the coefficients of f(Y + c), so that we have f(Y) =

∑
0≤i≤kaiY

i and

f(Y + c) =
∑

0≤i≤kbiY
i. Then we can verify that bi is the inner product of the

i-th sub-diagonal of S with the lower k + 1 − i elements of A, for i = 0, . . . , k. In
particular for i = 0, the coefficient b0 is the inner product of the diagonal of S and
the vector A.

Recalling that c ∈ K, the construction of bi can be performed in a graded
fashion from the linear combinations of homogeneous parts of aj for j ≤ i. The
homogeneous part bi(d) of degree d, can be computed from only aj(d) , for j ≤ i.
Therefore, a generator for bi is easily constructed from the homogeneous parts
of aj , for j ≤ i, using multiplication by elements of K and polynomial addition.
Therefore, we can construct the entire UPoPS f(Y + c) in a lazy manner through
initializing each coefficient bi with a so-called linear combination generator. Since
the main application of Taylor shift is factorization via Hensel’s lemma, we leave
its evaluation to Section 6 where benchmarks for factorization are presented.

5 Lazy Weierstrass Preparation

In this section we consider the application of Weierstrass Preparation Theorem
(WPT) to univariate polynomials over power series. Let f , p, α ∈ K[[X1, . . . , Xn]][Y]

where f =
∑d+m

i=0 aiY
i, p = Y d +

∑d−1
i=0 biY

i, and α =
∑m

i=0 ciY
i. From the proof

13

of WPT (Theorem 1), we have that f = αp implies the following equalities:

a0 = b0c0
a1 = b0c1 + b1c0

...
ad−1 = b0cd−1 + b1cd−2 + · · ·+ bd−2c1 + bd−1c0
ad = b0cd + b1cd−1 + · · ·+ bd−1c1 + c0

...
ad+m−1 = bd−1cm + cm−1
ad+m = cm

(1)

Following the proof, we wish to solve these equations modulo successive powers
of M, the maximal ideal of K[[X1, . . . , Xn]]. This implies that we will be itera-
tively updating each power series b0, . . . , bd−1, c0, . . . , cm by adding homogeneous
polynomials of increasing degree, precisely as we have done for all lazy power series
operations thus far. To solve these equations moduloMr+1, both the proof of WPT
and the algorithm operates in two phases. First, the coefficients b0, . . . , bd−1 of p
are updated using the equations from a0 to ad−1, one after the other. Second, the
coefficients c0, . . . , cm of α are updated.

Let us begin with the first phase. Rearranging the equations that express a0 to
ad−1 shows their successive dependency where bi−1 is needed for bi:

a0 = b0c0
a1 − b0c1 = b1c0

a2 − b0c2 − b1c1 = b2c0
...

ad−1 − b0cd−1 − b1cd−2 + · · · − bd−2c1 = bd−1c0

(2)

Consider that b0, . . . , bd−1, c0, . . . , cm are known modulo Mr and a0, . . . , ad−1 are
known modulo Mr+1. Using Lemma 1 the first equation a0 = b0c0 can then be
solved for b0 modulo Mr+1. From there, the expression a1 − b0c1 then becomes
known modulo Mr+1. Notice that the constant term of b0 is 0 by definition, thus
the product b0c1 is known modulo Mr+1 as long as b0 is known modulo Mr+1.
Therefore, the entire expression a1 − b0c1 is known modulo Mr+1 and Lemma 1
can be applied to solve for b1 in the equation a1 − b0c1 = b1c0. This argument
follows for all equations, therefore solving for all b0, . . . , bd−1 modulo Mr+1.

In the second phase, we look to determine c0, . . . , cm modulo Mr+1. Here,
we have already computed b0, . . . , bd−1 modulo Mr+1. A rearrangement of the
remaining equations of (1) shows that each ci may be computed modulo Mr+1:

cm = ad+m

cm−1 = ad+m−1 − bd−1cm
cm−2 = ad+m−2 − bd−2cm − bd−1cm−1

...
c0 = ad − b0cd − b1cd−1 − · · · − bd−1c1

(3)

Consider the second equation. Observe that ad+m−1 and bd−1 are known modulo
Mr+1 and that bd−1 ∈M holds. Then, the product bd−1cm is known moduloMr+1

and we deduce cm−1 modulo Mr+1. The same follows for cm−2, . . . , c0.

14

With these two sets of re-arranged equations, we have seen how the coefficients
of p and α can be updated modulo successive powers ofM. That is to say, how they
can be updated by adding homogeneous parts of successive degrees. This design
lends itself to be implemented as generator functions.

The first challenge to this design is that each power series coefficient of p is not
independent, and must be updated in a particular order. Moreover, to generate
homogeneous parts of degree d for the coefficients of p, the coefficients of α must
also be updated to degree d − 1. Therefore, it is a required side effect of each
generator of b0, . . . , bd−1, c0, . . . , cm that all other power series are updated. To
implement this, the generators of the power series of p are a mere wrapper of the
same underlying updating function which updates all coefficients simultaneously.
This so-called Weierstrass update follows two phases as just explained.

In the first phase one must use Lemma 1 to solve for the homogeneous part
of degree r for each b0, . . . , bd−1. To achieve this effectively, our implementation
follows two key points. The first is an efficient implementation of Lemma 1 itself.
Consider again the equations of Lemma 1 for f = gh modulo Mr+1:

f(1) + f(2) + · · ·+ f(r) = (g(1) + g(2) + · · ·+ g(r))(h(0) + h(1) + · · ·+ h(r))

=
(
g(1)h(0)

)
+
(
g(2)h(0) + g(1)h(1)

)
+ · · ·+(

g(r)h(0) + g(r−1)h(1) + · · ·+ g(1)h(r−1)
)
.

(4)

The goal is to obtain g(r). What one should realize is that computing g(r) requires
only a fraction of this formula. In particular, we have

f(r) = g(r)h(0) + g(r−1)h(1) + · · ·+ g(1)h(r−1), (5)

and g(r) can be computed with simply polynomial addition and multiplication,
followed by the division of a single element of K, since h(0) has degree 0.

The second key point is that, in order to compute g(r), i.e. the homogeneous
parts of degree r of b0, . . . , bd−1, we must first find f(r), i.e. the homogeneous parts
of degree r of a0, a1 − b0c1, a2 − b0c2 − b1c1, etc. from (2). A nice result of our
existing power series design is that we can define some lazy power series, say Fi,
such that Fi = ai −

∑i
k=0 bkci−k. These Fi can then be automatically updated

via its generators when the bk are updated. The implementation of phase one of
Weierstrass update is then simply a loop over solving equation (5), where f(r) is
automatically obtained through the use of generators on the power series Fi.

Phase two of Weierstrass update follows the same design as in the definition of
those Fi power series. In particular, from (3) we can see that each cm, . . . , c0 is
merely the result of some power series arithmetic. Hence, we simply rely on the
underlying power series arithmetic generators to be the generators of cm, . . . , c0.

With the above discussion, we have fully defined a lazy implementation of Weier-
strass preparation. It begins with an initialization, which simply uses lazy power
series arithmetic to create F0, . . . , Fd−1, cm, . . . , c0, and initializes each b0, . . . , bd−1
to 0. Then, the generators for b0, . . . , bd−1 all call the same underlying Weierstrass
update function. This function is shown in Algorithm 1, which is split into two
phases as our discussion has suggested.

In our implementation, we store a pointer to the array of F0, . . . , Fd−1 in the
UPoPS struct of p for ease of calling Weierstrass update. This, along with the

15

Algorithm 1 WeierstrassUpdate(f , p, α, F)

Input: f =
∑d+m

i=0 aiY
i, p =

∑d
i=0 biY

i, α =
∑m

i=0 ciY
i, ai, bi, ci ∈ K[[X1, . . . , Xn]] satisfying

Theorem 1, F = {Fi | Fi = ai −
∑i

k=0 bkci−k, i = 0, . . . , d− 1}, with b0, . . . , bd−1, c0, . . . , cm
known modulo Mr, the maximal ideal of K[[X1, . . . , Xn]].

Output: b0, . . . , bd−1, c0, . . . , cm known modulo Mr+1, updated in-place.

. phase one
1: for i = 0 to d− 1 do
2: s := 0
3: for k = 1 to r − 1 do
4: s := s + homogPart PS(r − k, bi) × homogPart PS(k, c0)

5: homogPart PS(r, bi) := (homogPart PS(r, Fi) − s) / homogPart PS(0, c0)

. phase two
6: for i = 0 to m do
7: homogPart PS(r, ci) . force an update of ci for next update.

circular references between coefficients of p and α, creates a delicate situation for
reference counting. Readers may refer to our code in BPAS [3] for our solution.

Notice also that, although phase one requires updating each bi in order from i = 0
to d − 1, the same is not true for c0, . . . , cm. This second phase is embarrassingly
parallel. Structuring Weierstrass preparation as a lazy operation also naturally
exposes further concurrency opportunities, such a parallel pipeline structure in the
case of factorization via Hensel’s lemma, see Section 6.

Finally, we report on experimental results for Weierstrass preparation against
the PowerSeries library. We note that the latter is not a lazy implementation,
returning only a truncated UPoPS. We have studied two families of examples:

(i) 1
1+X1+X2

Y k + Y k−1 + · · ·+ Y 2 +X2Y +X1 and

(ii) 1
1+X1+X2

Y k + Y k−1 + · · ·+ Y dk/2e +X2Y
dk/2e−1 + · · ·+X2Y +X1

The first results in p of degree 2, while the second results in p of degree dk/2e,
thus emphasizing the performance of phase two and phase one of the algorithm,
respectively. The results of this experiment are summarized in Figures 4 and 5.
Not only is our implementation orders of magnitude faster than Maple, but the
difference in computation time further increases with increasing precision (total
degree in X1, X2). This can be attributed to our efficient underlying power series
arithmetic, as well as our smart implementation of Lemma 1.

6 Lazy Factorization via Hensel’s Lemma

In Section 2 we have seen the description of Hensel’s lemma for univariate poly-
nomial over power series. Specifically, that the proof by construction provides a
mechanism to factor UPoPS. We now look to make that construction lazy.

Recall that the proof of Theorem 2 provides a mechanism to factor a UPoPS
f ∈ K[[X1, . . . , Xn]][Y] into factors f1, . . . , fr based on Taylor shift and repeated
applications of Weierstrass preparation. The construction begins by first factorizing
the polynomial f̄ = f(0, . . . , 0, Y) ∈ K[Y], obtained by evaluating all variables in
power series coefficients to 0, into linear factors. This can be performed with a
suitable (algebraic) factorization algorithm for K. For simplicity of presentation,
let us assume that f̄ factorizes into linear factors over K, thus returning a list of
roots c1, . . . , cr ∈ K with respective multiplicities k1, . . . , kr. The construction then

16

Figure 4: Applying Weierstrass preparation on family (i) for increasing precisions.

Figure 5: Applying Weierstrass preparation on family (ii) for increasing precisions.

proceeds recursively, obtaining one factor at a time.
Let us describe one step of the recursion, where f∗ describes the current poly-

nomial to factorize, initially being set to f . For a root ci of f̄ , we perform a
Taylor shift to obtain g = f∗(Y + ci) such that g has order ki (as a polynomial
in Y). The Weierstrass preparation theorem can then be applied to obtain p and
α ∈ K[[X1, . . . , Xn]][Y] where p is monic and of degree ki. A Taylor shift is then
applied in reverse to obtain fi = p(Y − cr), a factor of f , and f∗ = α(Y − cr), the
UPoPS to factorize in the next step. The full procedure for obtaining all factors of
f is shown as an iterative process, instead of recursive, in Algorithm 2.

The beauty of this algorithm is that it is immediately a lazy algorithm with no
additional effort. Using the underlying lazy operations of Taylor shift (Section 4)
and Weierstrass preparation (Section 5), the entire factorization is performed lazily,
returning a factorization nearly instantly. The power series coefficients of these
factors can automatically be updated later using their generators, which are simply

17

Algorithm 2 HenselFactorization(f)

Input: f =
∑k

i=0 aiY
i, ai ∈ K[[X1, . . . , Xn]].

Output: f1, . . . , fr satisfying Theorem 2.
1: f̄ = f(0, . . . , 0, Y)
2: c1, . . . , cr := obtain roots of f̄ . by some appropriate factorization algorithm
3: f∗ = f
4: for i = 1 to r do
5: g := f∗(Y + ci)
6: p, α := WeierstrassPreparation(g)
7: fi := p(Y − ci)
8: f∗ := α(Y − ci)
9: return f1, . . . , fr

Taylor shift operations on top of a Weierstrass update.
Notice too the opportunities for concurrency exposed from a lazy Taylor shift

and lazy Weierstrass. The factors f1, . . . , fr are created from successive applications
of Weierstrass preparation. They in essence form a pipeline of processes [14, Ch.
9]. Updating one factor simultaneously causes its associated α from Weierstrass
preparation to be updated. This in turn allows the next factor to be updated since
this α is the input into the next Weierstrass preparation. This concurrency is on
top of that available within a single Weierstrass preparation.

We now compare our implementation of factorization via Hensel’s lemma in
BPAS against that of Maple’s PowerSeries library. In the latter, two func-
tions are available for this operation: ExtendedHenselConstruction (EHC) and
FactorizationViaHenselLemma (FVHL). FVHL has the same specifications as Al-
gorithm 2 while EHC factorizes UPoPS over the field of Puiseux series inX1, . . . , Xn,
see [1]. Our tests use two UPoPS f , one of degree 3 and one of degree 4, such that
f̄ splits into linear factors over Q; in this way the output is the same for our BPAS
code, EHC, and FVHL.

The results of this experiment are summarized in Figure 6 for the two UPoPS.
Our implementation is orders of magnitude faster. We observe that the gap between
our implementation and EHC increases both as UPoPS degree increases and as
power series precision increases. A theoretical comparison, in terms of complexity
analysis, between the EHC and Algorithm 2 is work in progress.

7 Conclusions and Future Work

Throughout this work we have explored the design and implementation of lazy
multivariate power series, employing them in Weierstrass preparation and the fac-
torization of univariate polynomials over power series via Hensel’s lemma. Our
implementation in the C language is orders of magnitude faster than existing im-
plementations in SageMath and Maple’s PowerSeries library. In part, this is
due to overcoming the challenge of working with dynamic generator functions in a
compiled language, rather than using a more simplistic scripting language.

Yet, still more work can be done to further improve the performance of our
implementation. The implementation of our arithmetic follows naive quadratic
algorithms; instead, relaxed algorithms [20] should be integrated into our imple-
mentation to improve its algebraic complexity. Further, as mentioned in the case of
Weierstrass preparation and in factorization via Hensel’s lemma, there are opportu-

18

Figure 6: Applying factorization via Hensel’s lemma to the UPoPS f1 = (Y − 1)(Y − 2)(Y − 3) +
X1(Y 2 + Y) and f2 = (Y − 1)(Y − 2)(Y − 3)(Y − 4) +X1(Y 3 + Y).

nities for concurrency in their implementation as lazy operations. This concurrency
can be exploited with parallel programming techniques, including a parallel map
and parallel pipeline, to yield further improved performance.

Acknowledgements

The authors would like to thank NSERC of Canada (award CGSD3-535362-2019)
and Robert H. C. Moir.

References

[1] Parisa Alvandi, Masoud Ataei, Mahsa Kazemi, and Marc Moreno Maza. On
the extended hensel construction and its application to the computation of real
limit points. J. Symb. Comput., 98:120–162, 2020.

[2] Parisa Alvandi, Mahsa Kazemi, and Marc Moreno Maza. Computing limits
with the regularchains and powerseries libraries: from rational functions to
zariski closure. ACM Commun. Comput. Algebra, 50(3):93–96, 2016.

[3] M. Asadi, A. Brandt, C. Chen, S. Covanov, M. Kazemi, F. Mansouri, D. Mo-
hajerani, R. H. C. Moir, M. Moreno Maza, D. Talaashrafi, Linxiao Wang, Ning
Xie, and Yuzhen Xie. Basic Polynomial Algebra Subprograms (BPAS), 2020.
www.bpaslib.org.

[4] M. Asadi, A. Brandt, R. H. C. Moir, M. Moreno Maza, and Yuzhen Xie. On the
parallelization of triangular decomposition of polynomial systems. In ISSAC
2020, Proceedings, pages 22–29. ACM, 2020.

[5] Mohammadali Asadi, Alexander Brandt, Robert H. C. Moir, and Marc Moreno
Maza. Algorithms and data structures for sparse polynomial arithmetic. Math-
ematics, 7(5):441, 2019.

19

www.bpaslib.org

[6] William H Burge and Stephen M Watt. Infinite structures in scratchpad ii. In
European Conference on Computer Algebra, pages 138–148. Springer, 1987.

[7] Xavier Dahan, Marc Moreno Maza, Éric Schost, Wenyuan Wu, and Yuzhen
Xie. Lifting techniques for triangular decompositions. In ISSAC 2005, Beijing,
China, 2005, Proceedings, pages 108–115, 2005.

[8] Wolfram Decker, Gert-Martin Greuel, Gerhard Pfister, and Hans Schönemann.
Singular 4-1-1 — A computer algebra system for polynomial computations.
http://www.singular.uni-kl.de, 2018.

[9] G. Fischer. Plane Algebraic Curves. AMS, 2001.

[10] W. Hart, F. Johansson, and S. Pancratz. FLINT: Fast Library for Number
Theory, 2015. Version 2.5.2, http://flintlib.org.

[11] Jerzy Karczmarczuk. Generating power of lazy semantics. Theor. Comput.
Sci., 187(1-2):203–219, 1997.

[12] Mahsa Kazemi and Marc Moreno Maza. Detecting singularities using the pow-
erseries library. In Maple in Mathematics Education and Research - Third
Maple Conference, MC 2019, Proceedings, pages 145–155. Springer, 2019.

[13] M Lauer. Computing by homomorphic images. In Computer Algebra, pages
139–168. Springer, 1983.

[14] M. McCool, J. Reinders, and A. Robison. Structured parallel programming:
patterns for efficient computation. Elsevier, 2012.

[15] Michael B. Monagan and Paul Vrbik. Lazy and forgetful polynomial arithmetic
and applications. In CASC 2009, Proceedings, pages 226–239, 2009.

[16] Adam Parusiski and Guillaume Rond. The AbhyankarJung theorem. Journal
of Algebra, 365:29 – 41, 2012.

[17] T. Sasaki and F. Kako. Solving multivariate algebraic equation by Hensel
construction. Japan J. Indust. and Appl. Math., 1999.

[18] Michael L. Scott. Programming Language Pragmatics (3. ed.). Academic Press,
2009.

[19] The Sage Developers. SageMath, the Sage Mathematics Software System (Ver-
sion 9.1), 2020. https://www.sagemath.org.

[20] Joris van der Hoeven. Relax, but don’t be too lazy. J. Symb. Comput.,
34(6):479–542, 2002.

[21] J. von zur Gathen and J. Gerhard. Modern Computer Algebra. Cambridge
University Press, NY, USA, 2 edition, 2003.

[22] Joachim von zur Gathen. Hensel and Newton methods in valuation rings.
Mathematics of Computation, 42(166):637–661, 1984.

20

http://www.singular.uni-kl.de
http://flintlib.org

	Introduction
	Background
	The Design and Implementation of Lazy Power Series
	The Power Series Data Structure, Generators, and Ancestors
	Implementing Power Series Arithmetic

	Univariate Polynomials over Lazy Power Series
	Lazy Weierstrass Preparation
	Lazy Factorization via Hensel's Lemma
	Conclusions and Future Work

