![]() |
Basic Polynomial Algebra Subprograms (BPAS)
v. 1.652
|
A finite field whose prime should be a generalized fermat number. More...
#include <GeneralizedFermatPrimeField.hpp>
Full inheritance diagram for GeneralizedFermatPrimeField:Public Member Functions | |
| GeneralizedFermatPrimeField (mpz_class a) | |
| GeneralizedFermatPrimeField (int a) | |
| GeneralizedFermatPrimeField (const GeneralizedFermatPrimeField &c) | |
| GeneralizedFermatPrimeField (const Integer &c) | |
| GeneralizedFermatPrimeField (const RationalNumber &c) | |
| GeneralizedFermatPrimeField (const SmallPrimeField &c) | |
| GeneralizedFermatPrimeField (const BigPrimeField &c) | |
| GeneralizedFermatPrimeField (const DenseUnivariateIntegerPolynomial &c) | |
| GeneralizedFermatPrimeField (const DenseUnivariateRationalPolynomial &c) | |
| GeneralizedFermatPrimeField (const SparseUnivariatePolynomial< Integer > &c) | |
| GeneralizedFermatPrimeField (const SparseUnivariatePolynomial< RationalNumber > &c) | |
| GeneralizedFermatPrimeField (const SparseUnivariatePolynomial< ComplexRationalNumber > &c) | |
| template<class Ring > | |
| GeneralizedFermatPrimeField (const SparseUnivariatePolynomial< Ring > &c) | |
| GeneralizedFermatPrimeField * | GPFpointer (GeneralizedFermatPrimeField *a) |
| GeneralizedFermatPrimeField * | GPFpointer (RationalNumber *a) |
| GeneralizedFermatPrimeField * | GPFpointer (SmallPrimeField *a) |
| GeneralizedFermatPrimeField * | GPFpointer (BigPrimeField *a) |
| void | setX (mpz_class a) |
| mpz_class | Prime () const |
| mpz_class | number () const |
| GeneralizedFermatPrimeField | unitCanonical (GeneralizedFermatPrimeField *u=NULL, GeneralizedFermatPrimeField *v=NULL) const |
| Obtain the unit normal (a.k.a canonical associate) of an element. More... | |
| GeneralizedFermatPrimeField | findPrimitiveRootOfUnity (long int n) const |
| GeneralizedFermatPrimeField & | operator= (const GeneralizedFermatPrimeField &c) |
| Copy assignment. | |
| GeneralizedFermatPrimeField & | operator= (const mpz_class &c) |
| GeneralizedFermatPrimeField & | operator= (int c) |
| bool | isZero () const |
| Determine if *this ring element is zero, that is the additive identity. More... | |
| void | zero () |
| Make *this ring element zero. | |
| bool | isOne () const |
| Determine if *this ring element is one, that is the multiplication identity. More... | |
| void | one () |
| Make *this ring element one. | |
| bool | isNegativeOne () const |
| void | negativeOne () |
| int | isConstant () const |
| bool | operator== (const GeneralizedFermatPrimeField &c) const |
| Equality test,. More... | |
| bool | operator== (const mpz_class &c) const |
| bool | operator!= (const GeneralizedFermatPrimeField &c) const |
| Inequality test,. More... | |
| bool | operator!= (const mpz_class &c) const |
| GeneralizedFermatPrimeField | operator+ (const GeneralizedFermatPrimeField &c) const |
| Addition. | |
| GeneralizedFermatPrimeField | operator+ (const mpz_class &c) const |
| GeneralizedFermatPrimeField & | operator+= (const mpz_class &c) |
| GeneralizedFermatPrimeField | operator+ (int c) const |
| GeneralizedFermatPrimeField & | operator+= (int c) |
| GeneralizedFermatPrimeField & | operator+= (const GeneralizedFermatPrimeField &y) |
| Addition assignment. | |
| GeneralizedFermatPrimeField | operator- (const GeneralizedFermatPrimeField &c) const |
| Subtraction. | |
| GeneralizedFermatPrimeField | operator- (const mpz_class &c) const |
| GeneralizedFermatPrimeField & | operator-= (const mpz_class &c) |
| GeneralizedFermatPrimeField | operator- (int c) const |
| GeneralizedFermatPrimeField & | operator-= (int c) |
| GeneralizedFermatPrimeField & | operator-= (const GeneralizedFermatPrimeField &y) |
| Subtraction assignment. | |
| GeneralizedFermatPrimeField | operator- () const |
| Negation. | |
| void | smallAdd2 (usfixn64 *xm, usfixn64 *ym, short &c) |
| void | oneShiftRight (usfixn64 *xs) |
| void | mulLong_2 (usfixn64 x, usfixn64 y, usfixn64 &s0, usfixn64 &s1, usfixn64 &s2) |
| void | mulLong_3 (usfixn64 const &x, usfixn64 const &y, usfixn64 &s0, usfixn64 &s1, usfixn64 &s2) |
| void | multiplication (usfixn64 *__restrict__ xs, const usfixn64 *__restrict__ ys, usfixn64 permutationStride, usfixn64 *lVector, usfixn64 *hVector, usfixn64 *cVector, usfixn64 *lVectorSub, usfixn64 *hVectorSub, usfixn64 *cVectorSub) |
| void | multiplication_step2 (usfixn64 *__restrict__ xs, usfixn64 permutationStride, usfixn64 *__restrict__ lVector, usfixn64 *__restrict__ hVector, usfixn64 *__restrict__ cVector) |
| GeneralizedFermatPrimeField | operator* (const GeneralizedFermatPrimeField &c) const |
| Multiplication. | |
| GeneralizedFermatPrimeField | operator* (const mpz_class &c) const |
| GeneralizedFermatPrimeField & | operator*= (const mpz_class &c) |
| GeneralizedFermatPrimeField | operator* (int c) const |
| GeneralizedFermatPrimeField & | operator*= (int c) |
| GeneralizedFermatPrimeField & | operator*= (const GeneralizedFermatPrimeField &c) |
| Multiplication assignment. | |
| GeneralizedFermatPrimeField | MultiP3 (GeneralizedFermatPrimeField ys) |
| GeneralizedFermatPrimeField | MulPowR (int s) |
| void | egcd (const mpz_class &x, const mpz_class &y, mpz_class *ao, mpz_class *bo, mpz_class *vo, mpz_class P) |
| GeneralizedFermatPrimeField | inverse2 () |
| GeneralizedFermatPrimeField | operator^ (long long int c) const |
| Exponentiation. | |
| GeneralizedFermatPrimeField | operator^ (const mpz_class &exp) const |
| GeneralizedFermatPrimeField & | operator^= (long long int c) |
| Exponentiation assignment. | |
| GeneralizedFermatPrimeField & | operator^= (const mpz_class &c) |
| ExpressionTree | convertToExpressionTree () const |
| Convert this to an expression tree. More... | |
| GeneralizedFermatPrimeField | operator/ (const GeneralizedFermatPrimeField &c) const |
| Exact division. | |
| GeneralizedFermatPrimeField | operator/ (long int c) const |
| GeneralizedFermatPrimeField | operator/ (const mpz_class &c) const |
| GeneralizedFermatPrimeField & | operator/= (const GeneralizedFermatPrimeField &c) |
| Exact division assignment. | |
| GeneralizedFermatPrimeField & | operator/= (long int c) |
| GeneralizedFermatPrimeField & | operator/= (const mpz_class &c) |
| GeneralizedFermatPrimeField | operator% (const GeneralizedFermatPrimeField &c) const |
| Get the remainder of *this and b;. | |
| GeneralizedFermatPrimeField & | operator%= (const GeneralizedFermatPrimeField &c) |
| Assign *this to be the remainder of *this and b. | |
| GeneralizedFermatPrimeField | gcd (const GeneralizedFermatPrimeField &a) const |
| Get GCD of *this and other. | |
| Factors< GeneralizedFermatPrimeField > | squareFree () const |
| Compute squarefree factorization of *this. | |
| GeneralizedFermatPrimeField | euclideanSize () const |
| Get the euclidean size of *this. | |
| GeneralizedFermatPrimeField | euclideanDivision (const GeneralizedFermatPrimeField &b, GeneralizedFermatPrimeField *q=NULL) const |
| Perform the eucldiean division of *this and b. More... | |
| GeneralizedFermatPrimeField | extendedEuclidean (const GeneralizedFermatPrimeField &b, GeneralizedFermatPrimeField *s=NULL, GeneralizedFermatPrimeField *t=NULL) const |
| Perform the extended euclidean division on *this and b. More... | |
| GeneralizedFermatPrimeField | quotient (const GeneralizedFermatPrimeField &b) const |
| Get the quotient of *this and b. | |
| GeneralizedFermatPrimeField | remainder (const GeneralizedFermatPrimeField &b) const |
| Get the remainder of *this and b. | |
| GeneralizedFermatPrimeField | inverse () const |
| Get the inverse of *this. | |
Static Public Member Functions | |
| static void | setPrime (mpz_class p, usfixn64 R, int K) |
| static mpz_class | power (mpz_class xi, mpz_class yi) |
| static mpz_class | findPrimitiveRootofUnity_plain (mpz_class n) |
| static GeneralizedFermatPrimeField | findPrimitiveRootofUnity (mpz_class n) |
Public Attributes | |
| usfixn64 * | x |
Static Public Attributes | |
| static mpz_class | characteristic |
| static RingProperties | properties |
| static usfixn64 | r |
| static int | k |
A finite field whose prime should be a generalized fermat number.
That is, for r = (2^w +/- 2^u), the prime is r^k, for some k.
|
inlinevirtual |
Convert this to an expression tree.
returns an expression tree describing *this.
Implements ExpressionTreeConvert.
|
virtual |
Perform the eucldiean division of *this and b.
Returns the remainder. If q is not NULL, then returns the quotient in q.
Implements BPASEuclideanDomain< GeneralizedFermatPrimeField >.
|
virtual |
Perform the extended euclidean division on *this and b.
Returns the GCD. If s and t are not NULL, returns the bezout coefficients in them.
Implements BPASEuclideanDomain< GeneralizedFermatPrimeField >.
|
inlinevirtual |
Determine if *this ring element is one, that is the multiplication identity.
returns true iff *this is one.
Implements BPASRing< GeneralizedFermatPrimeField >.
|
inlinevirtual |
Determine if *this ring element is zero, that is the additive identity.
returns true iff *this is zero.
Implements BPASRing< GeneralizedFermatPrimeField >.
|
inlinevirtual |
|
inlinevirtual |
|
virtual |
Obtain the unit normal (a.k.a canonical associate) of an element.
If either parameters u, v, are non-NULL then the units are returned such that b = ua, v = u^-1. Where b is the unit normal of a, and is the returned value.
Implements BPASRing< GeneralizedFermatPrimeField >.
1.8.13