Basic Polynomial Algebra Subprograms (BPAS)
v. 1.791
|
A prime field whose prime can be arbitrarily large. More...
#include <BigPrimeField.hpp>
Public Member Functions | |
BigPrimeField (mpz_class _a) | |
BigPrimeField (long int _a) | |
BigPrimeField (const BigPrimeField &c) | |
BigPrimeField (const Integer &c) | |
BigPrimeField (const RationalNumber &c) | |
BigPrimeField (const ComplexRationalNumber &c) | |
BigPrimeField (const SmallPrimeField &c) | |
BigPrimeField (const GeneralizedFermatPrimeField &c) | |
BigPrimeField (const DenseUnivariateIntegerPolynomial &c) | |
BigPrimeField (const DenseUnivariateRationalPolynomial &c) | |
BigPrimeField (const SparseUnivariatePolynomial< Integer > &c) | |
BigPrimeField (const SparseUnivariatePolynomial< RationalNumber > &c) | |
BigPrimeField (const SparseUnivariatePolynomial< ComplexRationalNumber > &c) | |
template<class Ring > | |
BigPrimeField (const SparseUnivariatePolynomial< Ring > &c) | |
BigPrimeField * | BPFpointer (BigPrimeField *b) |
BigPrimeField * | BPFpointer (RationalNumber *a) |
BigPrimeField * | BPFpointer (SmallPrimeField *a) |
BigPrimeField * | BPFpointer (GeneralizedFermatPrimeField *a) |
mpz_class | getCharacteristic () const override |
The characteristic of this ring class. | |
mpz_class | Prime () const |
mpz_class | number () const |
void | whichprimefield () |
BigPrimeField | findPrimitiveRootOfUnity (long int n) const |
BigPrimeField | unitCanonical (BigPrimeField *u=NULL, BigPrimeField *v=NULL) const |
Obtain the unit normal (a.k.a canonical associate) of an element. More... | |
BigPrimeField & | operator= (const BigPrimeField &c) |
Copy assignment. | |
BigPrimeField & | operator= (long int k) |
BigPrimeField & | operator= (const mpz_class &k) |
bool | isZero () const |
Determine if *this ring element is zero, that is the additive identity. More... | |
void | zero () |
Make *this ring element zero. | |
bool | isOne () const |
Determine if *this ring element is one, that is the multiplication identity. More... | |
void | one () |
Make *this ring element one. | |
bool | isNegativeOne () const |
void | negativeOne () |
int | isConstant () const |
bool | operator== (const BigPrimeField &c) const |
Equality test,. More... | |
bool | operator== (const mpz_class &k) const |
bool | operator== (long int k) const |
bool | operator!= (const BigPrimeField &c) const |
Inequality test,. More... | |
bool | operator!= (const mpz_class &k) const |
bool | operator!= (long int k) const |
BigPrimeField | operator+ (const BigPrimeField &c) const |
Addition. | |
BigPrimeField | operator+ (long int c) const |
BigPrimeField | operator+ (const mpz_class &c) const |
BigPrimeField & | operator+= (const BigPrimeField &c) |
Addition assignment. | |
BigPrimeField | operator+= (long int c) |
BigPrimeField | operator+= (const mpz_class &c) |
BigPrimeField | operator- (const BigPrimeField &c) const |
Subtraction. | |
BigPrimeField | operator- (long int c) const |
BigPrimeField | operator- (const mpz_class &c) const |
BigPrimeField & | operator-= (const BigPrimeField &c) |
Subtraction assignment. | |
BigPrimeField | operator-= (long int c) |
BigPrimeField | operator-= (const mpz_class &c) |
BigPrimeField | operator- () const |
Negation. | |
BigPrimeField | operator* (const BigPrimeField &c) const |
Multiplication. | |
BigPrimeField | operator* (const mpz_class &c) const |
BigPrimeField | operator* (long int c) const |
BigPrimeField & | operator*= (const BigPrimeField &c) |
Multiplication assignment. | |
BigPrimeField & | operator*= (const mpz_class &m) |
BigPrimeField & | operator*= (long int c) |
BigPrimeField | operator^ (long long int c) const |
Exponentiation. | |
BigPrimeField | operator^ (const mpz_class &exp) const |
BigPrimeField & | operator^= (long long int c) |
Exponentiation assignment. | |
BigPrimeField & | operator^= (const mpz_class &e) |
ExpressionTree | convertToExpressionTree () const |
Convert this to an expression tree. More... | |
BigPrimeField | operator/ (const BigPrimeField &c) const |
Exact division. More... | |
BigPrimeField | operator/ (long int c) const |
BigPrimeField | operator/ (const mpz_class &c) const |
BigPrimeField & | operator/= (const BigPrimeField &c) |
Exact division assignment. More... | |
BigPrimeField & | operator/= (long int c) |
BigPrimeField & | operator/= (const mpz_class &c) |
BigPrimeField | operator% (const BigPrimeField &c) const |
Get the remainder of *this and b;. More... | |
BigPrimeField & | operator%= (const BigPrimeField &c) |
Assign *this to be the remainder of *this and b. More... | |
BigPrimeField | gcd (const BigPrimeField &other) const |
Get GCD of *this and other. More... | |
BigPrimeField | gcd (long int c) |
BigPrimeField | gcd (const mpz_class &c) const |
Factors< BigPrimeField > | squareFree () const |
Compute squarefree factorization of *this. | |
Integer | euclideanSize () const |
Get the euclidean size of *this. | |
BigPrimeField | euclideanDivision (const BigPrimeField &b, BigPrimeField *q=NULL) const |
Perform the eucldiean division of *this and b. More... | |
BigPrimeField | extendedEuclidean (const BigPrimeField &b, BigPrimeField *s=NULL, BigPrimeField *t=NULL) const |
Perform the extended euclidean division on *this and b. More... | |
BigPrimeField | quotient (const BigPrimeField &b) const |
Get the quotient of *this and b. | |
BigPrimeField | remainder (const BigPrimeField &b) const |
Get the remainder of *this and b. | |
BigPrimeField | inverse () const |
Get the inverse of *this. More... | |
Static Public Member Functions | |
static void | setPrime (mpz_class p) |
static BigPrimeField | findPrimitiveRootofUnity (mpz_class n) |
Static Public Attributes | |
static mpz_class | characteristic |
A prime field whose prime can be arbitrarily large.
|
inlinevirtual |
Convert this to an expression tree.
returns an expression tree describing *this.
Implements ExpressionTreeConvert.
|
virtual |
Perform the eucldiean division of *this and b.
Returns the remainder. If q is not NULL, then returns the quotient in q.
Implements BPASEuclideanDomain< BigPrimeField >.
|
virtual |
Perform the extended euclidean division on *this and b.
Returns the GCD. If s and t are not NULL, returns the bezout coefficients in them.
Implements BPASEuclideanDomain< BigPrimeField >.
|
inlinevirtual |
Get GCD of *this and other.
other | the other element to get a gcd with. |
Implements BPASGCDDomain< BigPrimeField >.
|
inlinevirtual |
|
inlinevirtual |
Determine if *this ring element is one, that is the multiplication identity.
returns true iff *this is one.
Implements BPASRing< BigPrimeField >.
|
inlinevirtual |
Determine if *this ring element is zero, that is the additive identity.
returns true iff *this is zero.
Implements BPASRing< BigPrimeField >.
|
inlinevirtual |
|
inlinevirtual |
Get the remainder of *this and b;.
b | the divisor |
Implements BPASEuclideanDomain< BigPrimeField >.
|
inlinevirtual |
Assign *this to be the remainder of *this and b.
b | the divisor |
Implements BPASEuclideanDomain< BigPrimeField >.
|
inlinevirtual |
Exact division.
d | the divisor. |
Implements BPASIntegralDomain< BigPrimeField >.
|
inlinevirtual |
Exact division assignment.
d | the divisor. |
Implements BPASIntegralDomain< BigPrimeField >.
|
inlinevirtual |
|
virtual |
Obtain the unit normal (a.k.a canonical associate) of an element.
If either parameters u, v, are non-NULL then the units are returned such that b = ua, v = u^-1. Where b is the unit normal of a, and is the returned value.
Implements BPASRing< BigPrimeField >.