![]() |
Basic Polynomial Algebra Subprograms (BPAS)
v. 1.791
|
A prime field whose prime is 32 bits or less. More...
#include <SmallPrimeField.hpp>
Full inheritance diagram for SmallPrimeField:Public Member Functions | |
| SmallPrimeField (long long int _a) | |
| SmallPrimeField (const SmallPrimeField &c) | |
| SmallPrimeField (const Integer &c) | |
| SmallPrimeField (const RationalNumber &c) | |
| SmallPrimeField (const ComplexRationalNumber &c) | |
| SmallPrimeField (const BigPrimeField &c) | |
| SmallPrimeField (const GeneralizedFermatPrimeField &c) | |
| SmallPrimeField (const DenseUnivariateIntegerPolynomial &c) | |
| SmallPrimeField (const DenseUnivariateRationalPolynomial &c) | |
| SmallPrimeField (const SparseUnivariatePolynomial< Integer > &c) | |
| SmallPrimeField (const SparseUnivariatePolynomial< RationalNumber > &c) | |
| SmallPrimeField (const SparseUnivariatePolynomial< ComplexRationalNumber > &c) | |
| template<class Ring > | |
| SmallPrimeField (const SparseUnivariatePolynomial< Ring > &c) | |
| SmallPrimeField * | SPFpointer (SmallPrimeField *b) |
| SmallPrimeField * | SPFpointer (RationalNumber *a) |
| SmallPrimeField * | SPFpointer (BigPrimeField *a) |
| SmallPrimeField * | SPFpointer (GeneralizedFermatPrimeField *a) |
| long long int | number () const |
| void | whichprimefield () |
| mpz_class | getCharacteristic () const override |
| The characteristic of this ring class. | |
| long long int | Prime () |
| SmallPrimeField & | operator= (const SmallPrimeField &c) |
| Copy assignment. | |
| SmallPrimeField & | operator= (long long int k) |
| SmallPrimeField | findPrimitiveRootOfUnity (long int n) const |
| bool | isZero () const |
| Determine if *this ring element is zero, that is the additive identity. More... | |
| void | zero () |
| Make *this ring element zero. | |
| bool | isOne () const |
| Determine if *this ring element is one, that is the multiplication identity. More... | |
| void | one () |
| Make *this ring element one. | |
| bool | isNegativeOne () |
| void | negativeOne () |
| int | isConstant () |
| SmallPrimeField | unitCanonical (SmallPrimeField *u=NULL, SmallPrimeField *v=NULL) const |
| Obtain the unit normal (a.k.a canonical associate) of an element. More... | |
| SmallPrimeField | operator+ (const SmallPrimeField &c) const |
| Addition. | |
| SmallPrimeField | operator+ (const long long int &c) const |
| SmallPrimeField | operator+ (const int &c) const |
| SmallPrimeField | operator+= (const long long int &c) |
| SmallPrimeField & | operator+= (const SmallPrimeField &c) |
| Addition assignment. | |
| SmallPrimeField | operator- (const SmallPrimeField &c) const |
| Subtraction. | |
| SmallPrimeField | operator- (const long long int &c) const |
| SmallPrimeField | operator-= (const long long int &c) |
| SmallPrimeField & | operator-= (const SmallPrimeField &c) |
| Subtraction assignment. | |
| SmallPrimeField | operator- () const |
| Negation. | |
| SmallPrimeField | operator* (const SmallPrimeField &c) const |
| Multiplication. | |
| SmallPrimeField | operator* (long long int c) const |
| SmallPrimeField & | operator*= (const SmallPrimeField &c) |
| Multiplication assignment. | |
| long long int * | pinverse () |
| SmallPrimeField | inverse () const |
| Get the inverse of *this. More... | |
| SmallPrimeField | inverse2 () |
| SmallPrimeField | operator^ (long long int e) const |
| Exponentiation. | |
| SmallPrimeField & | operator^= (long long int e) |
| Exponentiation assignment. | |
| bool | operator== (const SmallPrimeField &c) const |
| Equality test,. More... | |
| bool | operator== (long long int k) const |
| bool | operator!= (const SmallPrimeField &c) const |
| Inequality test,. More... | |
| bool | operator!= (long long int k) const |
| ExpressionTree | convertToExpressionTree () const |
| Convert this to an expression tree. More... | |
| SmallPrimeField | operator/ (const SmallPrimeField &c) const |
| Exact division. More... | |
| SmallPrimeField | operator/ (long long int c) const |
| SmallPrimeField & | operator/= (const SmallPrimeField &c) |
| Exact division assignment. More... | |
| SmallPrimeField | operator% (const SmallPrimeField &c) const |
| Get the remainder of *this and b;. More... | |
| SmallPrimeField & | operator%= (const SmallPrimeField &c) |
| Assign *this to be the remainder of *this and b. More... | |
| SmallPrimeField | gcd (const SmallPrimeField &other) const |
| Get GCD of *this and other. More... | |
| Factors< SmallPrimeField > | squareFree () const |
| Compute squarefree factorization of *this. | |
| Integer | euclideanSize () const |
| Get the euclidean size of *this. | |
| SmallPrimeField | euclideanDivision (const SmallPrimeField &b, SmallPrimeField *q=NULL) const |
| Perform the eucldiean division of *this and b. More... | |
| SmallPrimeField | extendedEuclidean (const SmallPrimeField &b, SmallPrimeField *s=NULL, SmallPrimeField *t=NULL) const |
| Perform the extended euclidean division on *this and b. More... | |
| SmallPrimeField | quotient (const SmallPrimeField &b) const |
| Get the quotient of *this and b. | |
| SmallPrimeField | remainder (const SmallPrimeField &b) const |
| Get the remainder of *this and b. | |
Static Public Member Functions | |
| static void | setPrime (long long int p) |
| static SmallPrimeField | findPrimitiveRootofUnity (long long int n) |
| static long long int | Mont (long long int b, long long int c) |
| static long long int | getRsquare () |
Static Public Attributes | |
| static mpz_class | characteristic |
A prime field whose prime is 32 bits or less.
Elements of this field are encoded using montgomery trick.
|
inlinevirtual |
Convert this to an expression tree.
returns an expression tree describing *this.
Implements ExpressionTreeConvert.
|
virtual |
Perform the eucldiean division of *this and b.
Returns the remainder. If q is not NULL, then returns the quotient in q.
Implements BPASEuclideanDomain< SmallPrimeField >.
|
virtual |
Perform the extended euclidean division on *this and b.
Returns the GCD. If s and t are not NULL, returns the bezout coefficients in them.
Implements BPASEuclideanDomain< SmallPrimeField >.
|
inlinevirtual |
Get GCD of *this and other.
| other | the other element to get a gcd with. |
Implements BPASGCDDomain< SmallPrimeField >.
|
inlinevirtual |
|
inlinevirtual |
Determine if *this ring element is one, that is the multiplication identity.
returns true iff *this is one.
Implements BPASRing< SmallPrimeField >.
|
inlinevirtual |
Determine if *this ring element is zero, that is the additive identity.
returns true iff *this is zero.
Implements BPASRing< SmallPrimeField >.
|
inlinevirtual |
|
inlinevirtual |
Get the remainder of *this and b;.
| b | the divisor |
Implements BPASEuclideanDomain< SmallPrimeField >.
|
inlinevirtual |
Assign *this to be the remainder of *this and b.
| b | the divisor |
Implements BPASEuclideanDomain< SmallPrimeField >.
|
inlinevirtual |
Exact division.
| d | the divisor. |
Implements BPASIntegralDomain< SmallPrimeField >.
|
inlinevirtual |
Exact division assignment.
| d | the divisor. |
Implements BPASIntegralDomain< SmallPrimeField >.
|
inlinevirtual |
|
virtual |
Obtain the unit normal (a.k.a canonical associate) of an element.
If either parameters u, v, are non-NULL then the units are returned such that b = ua, v = u^-1. Where b is the unit normal of a, and is the returned value.
Implements BPASRing< SmallPrimeField >.
1.8.13