|
| GeneralizedFermatPrimeField (mpz_class a) |
|
| GeneralizedFermatPrimeField (int a) |
|
| GeneralizedFermatPrimeField (const GeneralizedFermatPrimeField &c) |
|
| GeneralizedFermatPrimeField (const Integer &c) |
|
| GeneralizedFermatPrimeField (const RationalNumber &c) |
|
| GeneralizedFermatPrimeField (const SmallPrimeField &c) |
|
| GeneralizedFermatPrimeField (const BigPrimeField &c) |
|
| GeneralizedFermatPrimeField (const DenseUnivariateIntegerPolynomial &c) |
|
| GeneralizedFermatPrimeField (const DenseUnivariateRationalPolynomial &c) |
|
| GeneralizedFermatPrimeField (const SparseUnivariatePolynomial< Integer > &c) |
|
| GeneralizedFermatPrimeField (const SparseUnivariatePolynomial< RationalNumber > &c) |
|
| GeneralizedFermatPrimeField (const SparseUnivariatePolynomial< ComplexRationalNumber > &c) |
|
template<class Ring > |
| GeneralizedFermatPrimeField (const SparseUnivariatePolynomial< Ring > &c) |
|
GeneralizedFermatPrimeField * | GPFpointer (GeneralizedFermatPrimeField *a) |
|
GeneralizedFermatPrimeField * | GPFpointer (RationalNumber *a) |
|
GeneralizedFermatPrimeField * | GPFpointer (SmallPrimeField *a) |
|
GeneralizedFermatPrimeField * | GPFpointer (BigPrimeField *a) |
|
mpz_class | getCharacteristic () const override |
| The characteristic of this ring class.
|
|
void | setX (mpz_class a) |
|
mpz_class | Prime () const |
|
mpz_class | number () const |
|
GeneralizedFermatPrimeField | unitCanonical (GeneralizedFermatPrimeField *u=NULL, GeneralizedFermatPrimeField *v=NULL) const |
| Obtain the unit normal (a.k.a canonical associate) of an element. More...
|
|
GeneralizedFermatPrimeField | findPrimitiveRootOfUnity (long int n) const |
|
GeneralizedFermatPrimeField & | operator= (const GeneralizedFermatPrimeField &c) |
| Copy assignment.
|
|
GeneralizedFermatPrimeField & | operator= (const mpz_class &c) |
|
GeneralizedFermatPrimeField & | operator= (int c) |
|
bool | isZero () const |
| Determine if *this ring element is zero, that is the additive identity. More...
|
|
void | zero () |
| Make *this ring element zero.
|
|
bool | isOne () const |
| Determine if *this ring element is one, that is the multiplication identity. More...
|
|
void | one () |
| Make *this ring element one.
|
|
bool | isNegativeOne () const |
|
void | negativeOne () |
|
int | isConstant () const |
|
bool | operator== (const GeneralizedFermatPrimeField &c) const |
| Equality test,. More...
|
|
bool | operator== (const mpz_class &c) const |
|
bool | operator!= (const GeneralizedFermatPrimeField &c) const |
| Inequality test,. More...
|
|
bool | operator!= (const mpz_class &c) const |
|
GeneralizedFermatPrimeField | operator+ (const GeneralizedFermatPrimeField &c) const |
| Addition.
|
|
GeneralizedFermatPrimeField | operator+ (const mpz_class &c) const |
|
GeneralizedFermatPrimeField & | operator+= (const mpz_class &c) |
|
GeneralizedFermatPrimeField | operator+ (int c) const |
|
GeneralizedFermatPrimeField & | operator+= (int c) |
|
GeneralizedFermatPrimeField & | operator+= (const GeneralizedFermatPrimeField &y) |
| Addition assignment.
|
|
GeneralizedFermatPrimeField | operator- (const GeneralizedFermatPrimeField &c) const |
| Subtraction.
|
|
GeneralizedFermatPrimeField | operator- (const mpz_class &c) const |
|
GeneralizedFermatPrimeField & | operator-= (const mpz_class &c) |
|
GeneralizedFermatPrimeField | operator- (int c) const |
|
GeneralizedFermatPrimeField & | operator-= (int c) |
|
GeneralizedFermatPrimeField & | operator-= (const GeneralizedFermatPrimeField &y) |
| Subtraction assignment.
|
|
GeneralizedFermatPrimeField | operator- () const |
| Negation.
|
|
void | smallAdd2 (usfixn64 *xm, usfixn64 *ym, short &c) |
|
void | oneShiftRight (usfixn64 *xs) |
|
void | mulLong_2 (usfixn64 x, usfixn64 y, usfixn64 &s0, usfixn64 &s1, usfixn64 &s2) |
|
void | mulLong_3 (usfixn64 const &x, usfixn64 const &y, usfixn64 &s0, usfixn64 &s1, usfixn64 &s2) |
|
void | multiplication (usfixn64 *__restrict__ xs, const usfixn64 *__restrict__ ys, usfixn64 permutationStride, usfixn64 *lVector, usfixn64 *hVector, usfixn64 *cVector, usfixn64 *lVectorSub, usfixn64 *hVectorSub, usfixn64 *cVectorSub) |
|
void | multiplication_step2 (usfixn64 *__restrict__ xs, usfixn64 permutationStride, usfixn64 *__restrict__ lVector, usfixn64 *__restrict__ hVector, usfixn64 *__restrict__ cVector) |
|
GeneralizedFermatPrimeField | operator* (const GeneralizedFermatPrimeField &c) const |
| Multiplication.
|
|
GeneralizedFermatPrimeField | operator* (const mpz_class &c) const |
|
GeneralizedFermatPrimeField & | operator*= (const mpz_class &c) |
|
GeneralizedFermatPrimeField | operator* (int c) const |
|
GeneralizedFermatPrimeField & | operator*= (int c) |
|
GeneralizedFermatPrimeField & | operator*= (const GeneralizedFermatPrimeField &c) |
| Multiplication assignment.
|
|
GeneralizedFermatPrimeField | MultiP3 (GeneralizedFermatPrimeField ys) |
|
GeneralizedFermatPrimeField | MulPowR (int s) |
|
void | egcd (const mpz_class &x, const mpz_class &y, mpz_class *ao, mpz_class *bo, mpz_class *vo, mpz_class P) |
|
GeneralizedFermatPrimeField | inverse2 () |
|
GeneralizedFermatPrimeField | operator^ (long long int c) const |
| Exponentiation.
|
|
GeneralizedFermatPrimeField | operator^ (const mpz_class &exp) const |
|
GeneralizedFermatPrimeField & | operator^= (long long int c) |
| Exponentiation assignment.
|
|
GeneralizedFermatPrimeField & | operator^= (const mpz_class &c) |
|
ExpressionTree | convertToExpressionTree () const |
| Convert this to an expression tree. More...
|
|
GeneralizedFermatPrimeField | operator/ (const GeneralizedFermatPrimeField &c) const |
| Exact division. More...
|
|
GeneralizedFermatPrimeField | operator/ (long int c) const |
|
GeneralizedFermatPrimeField | operator/ (const mpz_class &c) const |
|
GeneralizedFermatPrimeField & | operator/= (const GeneralizedFermatPrimeField &c) |
| Exact division assignment. More...
|
|
GeneralizedFermatPrimeField & | operator/= (long int c) |
|
GeneralizedFermatPrimeField & | operator/= (const mpz_class &c) |
|
GeneralizedFermatPrimeField | operator% (const GeneralizedFermatPrimeField &c) const |
| Get the remainder of *this and b;. More...
|
|
GeneralizedFermatPrimeField & | operator%= (const GeneralizedFermatPrimeField &c) |
| Assign *this to be the remainder of *this and b. More...
|
|
GeneralizedFermatPrimeField | gcd (const GeneralizedFermatPrimeField &a) const |
| Get GCD of *this and other. More...
|
|
Factors< GeneralizedFermatPrimeField > | squareFree () const |
| Compute squarefree factorization of *this.
|
|
Integer | euclideanSize () const |
| Get the euclidean size of *this.
|
|
GeneralizedFermatPrimeField | euclideanDivision (const GeneralizedFermatPrimeField &b, GeneralizedFermatPrimeField *q=NULL) const |
| Perform the eucldiean division of *this and b. More...
|
|
GeneralizedFermatPrimeField | extendedEuclidean (const GeneralizedFermatPrimeField &b, GeneralizedFermatPrimeField *s=NULL, GeneralizedFermatPrimeField *t=NULL) const |
| Perform the extended euclidean division on *this and b. More...
|
|
GeneralizedFermatPrimeField | quotient (const GeneralizedFermatPrimeField &b) const |
| Get the quotient of *this and b.
|
|
GeneralizedFermatPrimeField | remainder (const GeneralizedFermatPrimeField &b) const |
| Get the remainder of *this and b.
|
|
GeneralizedFermatPrimeField | inverse () const |
| Get the inverse of *this. More...
|
|
A finite field whose prime should be a generalized fermat number.
That is, for r = (2^w +/- 2^u), the prime is r^k, for some k.