Basic Polynomial Algebra Subprograms (BPAS)  v. 1.722
Class Hierarchy

Go to the graphical class hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:
[detail level 123456789]
 CSLPZRepresentation::CoefOrInt
 CSLPRepresentation::CoefOrInt
 CDerived_from< Field, BPASField< Field > >
 CBPASTriangularSet< Field, RecursiveFieldPoly >An abstract class defining the interface of a triangular set
 CBPASRegularChain< Field, RecursiveFieldPoly >An abstract class defining the interface of a regular chain
 CBPASZeroDimensionalRegularChain< Field, RecursiveFieldPoly >An abstract class defining the interface of a zero-dimensional regular chain
 CBPASTriangularSet< Field, RecursivePoly >
 CBPASRegularChain< Field, RecursivePoly >
 CBPASZeroDimensionalRegularChain< Field, RecursivePoly >
 CZeroDimensionalRegularChain< Field, RecursivePoly >A zero-dimensional RegularChain
 CRegularChain< Field, RecursivePoly >A RegularChain over a BPASRecursivelyViewedPolynomial with coefficients in a field
 CZeroDimensionalRegularChain< Field, RecursivePoly >A zero-dimensional RegularChain
 CTriangularSet< Field, RecursivePoly >A triangular set templated by a multivariate polynomial over a field
 CRegularChain< Field, RecursivePoly >A RegularChain over a BPASRecursivelyViewedPolynomial with coefficients in a field
 CDerived_from< Field, BPASRing >
 CSparseUnivariateTempPoly< Field >
 CSparseUnivariateTempFieldPoly< Field >
 CDerived_from< RecursiveFieldPoly, BPASRecursivelyViewedPolynomial< Field, RecursiveFieldPoly > >
 CBPASTriangularSet< Field, RecursiveFieldPoly >An abstract class defining the interface of a triangular set
 CDerived_from< RecursivePoly, BPASRecursivelyViewedPolynomial< Field, RecursivePoly > >
 CBPASTriangularSet< Field, RecursivePoly >
 CDerived_from< Ring, BPASRing >
 CSparseUnivariateTempPoly< Ring >A univariate polynomial over an arbitrary BPASRing represented sparsely
 CExpressionTreeAn ExpressionTree encompasses various forms of data that can be expressed generically as a binary tree with data elements connected by operators
 CExpressionTreeConvertAn interface defining conversion of a class to an ExpressionTree
 CBPASRingAn abstract class defining the interface of a commutative ring
 CBPASBasePolynomial< Ring >An abstract class defining the interface of polynomial over an arbitrary BPASRing
 CBPASIntegralPolynomial< Ring >An abstract class defining the interface of a polynomial ring which is also an integral domain
 CBPASGCDPolynomial< Ring >An abstract class defining the interface of a polynomial ring which is also an GCD domain
 CBPASEuclideanPolynomial< Ring >An abstract class defining the interface of a polynomial ring which is also a Euclidean domain
 CBPASPolynomial< Ring >An abstract class defining the interface of a polynomial over an arbitrary BPASRing
 CBPASMultivariatePolynomial< Ring >An abstract class defining the interface of a multivariate polynomial over an arbitrary BPASRing
 CBPASRecursivelyViewedPolynomial< Ring >An abstract class defining the interface of a multivariate polynomial that can be viewed recursively
 CBPASBasePolynomial< Field >
 CBPASPolynomial< Field >
 CBPASMultivariatePolynomial< Field >
 CDistributedDenseMultivariateModularPolynomial< Field >A multivariate polynomial with coefficients in an arbitrary finite field represented densely
 CBPASBasePolynomial< Integer >
 CBPASPolynomial< Integer >
 CBPASMultivariatePolynomial< Integer >
 CBPASRecursivelyViewedPolynomial< Integer >
 CSparseMultivariateIntegerPolynomialA multivariate polynomial with Integer coefficients using a sparse representation
 CBPASBasePolynomial< RationalNumber >
 CBPASPolynomial< RationalNumber >
 CBPASMultivariatePolynomial< RationalNumber >
 CBPASRecursivelyViewedPolynomial< RationalNumber >
 CSparseMultivariateRationalPolynomialA multivariate polynomial with RationalNumber coefficients represented sparely
 CBPASBasePolynomial< sfixn >
 CBPASPolynomial< sfixn >
 CBPASMultivariatePolynomial< sfixn >
 CSmallPrimeFieldDistributedDenseMultivariateModularPolynomialA multivariate polynomial with coefficients in a small prime field using a dense representation
 CBPASIntegralDomainAn abstract class defining the interface of an integral domain
 CBPASGCDDomainAn abstract class defining the interface of a GCD domain
 CBPASEuclideanDomainAn abstract class defining the interface of a Euclidean domain
 CBPASEuclideanPolynomial< Ring >An abstract class defining the interface of a polynomial ring which is also a Euclidean domain
 CBPASFieldAn abstract class defining the interface of a field
 CBPASFieldOfFractions< Domain >An abstract class defining the interface of a field of fractions
 CBPASFieldOfFractions< Domain, Derived >
 CBPASFieldOfFractions< UnivariatePolynomialOverField, Derived >
 CBPASFiniteFieldAn abstract class defining the interface of a prime field
 CComplexRationalNumberAn arbitrary-precision complex rational number
 CRationalNumberAn arbitrary-precision rational number
 CDenseUnivariatePolynomial< Field >A univariate polynomial with arbitrary BPASField coefficients represented densely
 CDenseUnivariateRationalPolynomialA univariate polynomial with RationalNumber coefficients represented densely
 CIntegerAn arbitrary-precision Integer
 CBPASGCDPolynomial< Ring >An abstract class defining the interface of a polynomial ring which is also an GCD domain
 CDenseUnivariateIntegerPolynomialA univariate polynomial with Integer coefficients using a dense representation
 CDistributedDenseMultivariateModularPolynomial< Field >A multivariate polynomial with coefficients in an arbitrary finite field represented densely
 CSmallPrimeFieldDistributedDenseMultivariateModularPolynomialA multivariate polynomial with coefficients in a small prime field using a dense representation
 CSparseMultivariateIntegerPolynomialA multivariate polynomial with Integer coefficients using a sparse representation
 CSparseMultivariateRationalPolynomialA multivariate polynomial with RationalNumber coefficients represented sparely
 CBPASIntegralPolynomial< Ring >An abstract class defining the interface of a polynomial ring which is also an integral domain
 CFactor< Ring >A Factor is a pair of a BPASRing element and an integer exponent
 CFactors< Ring >A simple data structure for encapsulating a collection of Factor elements
 CExprTreeNodeExprTreeNode is a single node in the bianry tree of an ExpressionTree
 CExprTreeValExprTreeVal is the data element of a ExprTreeNode
 CIntervalData Structure for interval [a, b]
 CIntervalsInterval lists for real roots of multivariate polynomials
 Cpair
 CFactor< Ring >A Factor is a pair of a BPASRing element and an integer exponent
 CSLPRepresentationAn element of the SLP of a rational number polynomial
 CSLPZRepresentationAn element of the SLP of an integer polynomial
 CSparseUnivariateDoublePolynomial< NumericalType >A univariate polynomial with numerical coefficients represented sparsely
 CSparseUnivariateMPComplexPolynomialA univariate polynomial with multi-precision complex coefficients represented sparsely
 CSparseUnivariatePolynomial< Ring >
 CSymbolAn encapsulation of a mathematical symbol
 Ctype
 CBPASGCDPolynomialTester< Ring >Via conditional inheritance, determine if the ground ring template parameter Ring is a GCD domain or not
 CBPASIntegralPolynomialTester< Ring >Via conditional inheritance, determine if the ground ring template parameter Ring is an integral domain or not
 CBPASUnivariatePolynomial< Ring >An abstract class defining the interface of a univariate polynomial over an arbitrary BPASRing
 CSparseUnivariateTempPoly< Ring >A univariate polynomial over an arbitrary BPASRing represented sparsely
 CBPASUnivariatePolynomial< Field >
 CDenseUnivariatePolynomial< Field >A univariate polynomial with arbitrary BPASField coefficients represented densely
 CSparseUnivariateTempPoly< Field >
 CBPASUnivariatePolynomial< Integer >
 CDenseUnivariateIntegerPolynomialA univariate polynomial with Integer coefficients using a dense representation
 CBPASUnivariatePolynomial< RationalNumber >
 CDenseUnivariateRationalPolynomialA univariate polynomial with RationalNumber coefficients represented densely